首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The negative signaling receptor cytolytic T lymphocyte-associated Ag-4 (CTLA-4) resides primarily in intracellular compartments such as the Golgi apparatus of T cells. However, little is known regarding the molecular mechanisms that influence this accumulation. In this study, we demonstrate binding of the clathrin adaptor complex AP-1 with the GVYVKM motif of the cytoplasmic domain of CTLA-4. Binding occurred primarily in the Golgi compartment of T cells, unlike with AP-2 binding that occurs mostly with cell surface CTLA-4. Although evidence was not found to implicate AP-1 binding in the retention of CTLA-4 in the Golgi, AP-1 appears to play a role in shuttling of excess receptor from the Golgi to the lysosomal compartments for degradation. In support of this, increased CTLA-4 synthesis resulted in an increase in CTLA-4/AP-1 binding and a concomitant increase in the appearance of CTLA-4 in the lysosomal compartment. At the same time, the level of intracellular receptor was maintained at a constant level, suggesting that CTLA-4/AP-1 binding represents one mechanism to ensure steady state levels of intracellular CTLA-4 in T cells. Finally, we demonstrate that the TCR zeta/CD3 complex (but not CD28) also binds to AP-1 and AP-2 complexes, thus providing a possible link between these two receptors in the regulation of T cell function.  相似文献   

2.
CTLA-4 gene constructs were designed to express CTLA-4 exclusively in the endoplasmic reticulum (ER). Four different CTLA-4 gene constructs were transfected into HEK 293 (human embryonic kidney) and A20 (Balb/c mouse B lymphoma) cells. All constructs contained an ER retention signal and coded for CTLA-4 expression in the ER. One of the constructs, which contained the membrane part of CTLA-4, coded for an expression both on the cell surface and in the ER. Three of the expressed CTLA-4 types (including the ER-membrane-expressed form) caused a reduced surface expression of B7 in the A20 cells. Only constructs which allow dimerization of CTLA-4 showed this effect. It is assumed that intracellular CTLA-4 bound B7 and inhibited therefore the transport of B7 to the surface. The binding obviously caused also an enhanced degradation of the complexes because both proteins showed a low concentration in the transfected cell lines. CTLA-4-transfected and B7-reduced A20 cells showed a diminished costimulating activity upon T cells. This was demonstrated by a reduced proliferation of T cells from ovalbumin-immunized Balb/c mice, incubated with ovalbumin peptide-primed CTLA-4-transfected A20 cells.  相似文献   

3.
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named ‘inclusion’ and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11‐Family of Interacting Proteins, presents at the C‐terminus a Rab‐binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP‐tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11‐Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab‐binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab‐binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion.  相似文献   

4.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

5.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

6.
Hmunc13 is a cytosolic diacylglycerol (DAG)-binding protein, which is upregulated in renal cortical tubule and mesangial cells by hyperglycemia. In response to DAG activation, hmunc13 translocates to the Golgi. To investigate how this may relate to its function, we used a bacterial two-hybrid screen to look for hmunc13-interacting proteins. Full-length Rab34 was specifically isolated from a human kidney cDNA library. Co-expression of the two proteins confirmed Rab34 as a Golgi-associated protein, which was immunoprecipitated from cell lysates by hmunc13. Glutathione S-transferase fusion proteins of WT, Q111L (GTP bound), and T66N (GDP bound) mutants were created, and their GTP-binding activity verified by radioactive overlay assay. Binding of hmunc13 was observed with Q111L, barely detectable with T66N and enhanced with Rab34WT loaded with GTPgammaS compared with GDP loaded. Deletion of munc homolgy domain (MHD)-2, eliminated the hmunc13/Rab34 interaction. The Q111L mutant localized to the Golgi apparatus, but T66N was cytosolic. Localization of both mutants and Rab34WT was unchanged by DAG activation. The data suggest that DAG activation of hmunc13 causes it to be translocated to the Golgi, where it binds to GTP-bound Rab34 via MHD-2. Because Rab34 is known to regulate intracellular lysosome positioning, we propose that hmunc13 serves as an effector of Rab34, mediating lysosome-Golgi trafficking.  相似文献   

7.
8.
CTLA-4 is an activation-induced, homodimeric inhibitory receptor in T cells. Recent crystallographic reports have suggested that it may form lattice-like arrays on the cell surface upon binding B7.1/B7.2 (CD80, CD86) molecules. To test the biological relevance of these CTLA-4-B7 lattices, we introduced a C122A point mutation in human CTLA-4, because this residue was shown to be essential for dimerization in solution. Surprisingly, we found that up to 35% of C122A CTLA-4 dimerized in human T lymphocytes. Moreover, C122A CTLA-4 partitioned within lipid rafts, colocalized with the TCR in the immunological synapse, and inhibited T cell activation. C122-independent dimerization of CTLA-4 involved N-glycosylation, because further mutation of the N78 and N110 glycosylation sites abrogated dimerization. Despite being monomeric, the N78A/N110A/C122A triple mutant CTLA-4 localized in the immunological synapse and inhibited T cell activation. Such functionality correlated with B7-induced dimerization of these mutant molecules. Based on these data, we propose a model of hierarchical regulation of CTLA-4 oligomerization by which B7 binding ultimately determines the formation of dimer-dependent CTLA-4 lattices that may be necessary for triggering B7-dependent T cell inactivation.  相似文献   

9.
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase–dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)–MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP–MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP–MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA–mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane.  相似文献   

10.
CTLA-4 is expressed on the surface of activated T cells and negatively regulates T cell activation. Because a low-level expression of CTLA-4 on the cell surface is sufficient to induce negative signals in T cells, the surface expression of CTLA-4 is strictly regulated. We previously demonstrated that the association of CTLA-4 with the clathrin-associated adaptor complex AP-2 induces internalization of CTLA-4 and keeps the surface expression low. However, the mechanism to induce high expression on the cell surface upon stimulation has not yet been clarified. To address this, we investigated the intracellular dynamics of CTLA-4 by analyzing its localization and trafficking in wild-type and mutant CTLA-4-transfected Th1 clones. CTLA-4 is accumulated in intracellular granules, which we identified as lysosomes. CTLA-4 is degraded in lysosomes in a short period, and the degradation process may serve as one of the mechanisms to regulate CTLA-4 expression. Upon TCR stimulation, CTLA-4-containing lysosomes are secreted as proven by the secretion of cathepsin D and beta-hexosaminidase in parallel with the increase of surface expression of CTLA-4 and lysosomal glycoprotein 85, a lysosomal marker. These results suggest that the cell surface expression of CTLA-4 is up-regulated upon stimulation by utilizing a mechanism of secretory lysosomes in CD4(+)T cells.  相似文献   

11.
CTLA-4 has been shown to be an important negative regulator of T cell activation. To better understand its inhibitory action, we constructed CTLA-4 transgenic mice that display constitutive cell surface expression of CTLA-4 on CD4 and CD8 T cells. In both in vivo and in vitro T cell responses, CTLA-4 overexpression inhibits T cell activation. This inhibition is dependent on B7 and CD28, suggesting that overexpressed CTLA-4 inhibits responses by competing with CD28 for B7 binding or by interfering with CD28 signaling. In addition, expression of the transgene decreases the number of CD25+Foxp3+ T cells in these mice, but does not affect their suppressive ability. Our data confirm the activity of CTLA-4 as a negative regulator of T cell activation and that its action may be by multiple mechanisms.  相似文献   

12.
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.  相似文献   

13.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

14.
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.  相似文献   

15.
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella‐containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane‐bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP‐bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63‐containing late endosomes. Nischarin is recruited to the SCV in a Rab14‐dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners—Rac1, Rab14 and Rab9 GTPases—reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.  相似文献   

16.
Z Zhu  A Delprato  E Merithew  D G Lambright 《Biochemistry》2001,40(51):15699-15706
Rab GTPases function as essential regulators of vesicle transport between subcellular compartments of eukaryotic cells. Mss4, an evolutionarily conserved Rab accessory factor, facilitates nucleotide release and binds tightly to the nucleotide-free form of exocytic but not endocytic Rab GTPases. A structure-based mutational analysis of residues that are conserved only in exocytic Rab GTPases reveals three residues that are critical determinants of the broad specificity recognition of exocytic Rab GTPases by Mss4. One of these residues is located at the N-terminus of the switch I region near the nucleotide binding site whereas the other two flank an exposed hydrophobic triad previously implicated in effector recognition. The spatial disposition of these residues with respect to the structure of Rab3A correlates with the dimensions of the elongated Rab interaction epitope in Mss4 and supports a mode of interaction similar to that of other exchange factor-GTPase complexes. The complementarity of the corresponding interaction surfaces suggests a hypothetical structural model for the complex between Mss4 and Rab GTPases.  相似文献   

17.
Rim1 is a protein of the presynaptic active zone, the area of the plasma membrane specialized for neurotransmitter exocytosis, and interacts with Rab3, a small GTPase implicated in neurotransmitter vesicle dynamics. Here, we have studied the molecular determinants of Rim1 that are responsible for Rab3 binding, employing surface plasmon resonance and recombinant, bacterially expressed Rab3 and Rim1 proteins. A site that binds GTP- but not GDP-saturated Rab3 was localized to a short alpha-helical sequence near the Rim1 N terminus (amino acids 19-55). Rab3 isoforms A, C, and D were bound with similar affinities (K(d) = 1-2 microm). Low affinity binding of Rab6A-GTP was also observed (K(d) = 16 microm), whereas Rab1B, -5, -7, -8, or -11A did not bind. Adjacent sequences up to amino acid 387, encompassing differentially spliced sequences, the zinc finger module, and the SGAWFF motif of Rim1, did not significantly contribute to the strength or the specificity of Rab3 binding, whereas a point mutation within the helix (R33G) abolished binding. This Rab3 binding site of Rim1 is reminiscent of the N-terminal alpha-helix that is part of the Rab3-binding region of rabphilin-3, and indeed we observed low affinity, specific binding of Rab3A (K(d) on the order of magnitude of 10-100 microm) to this region of rabphilin-3 alone (amino acids 40-88), whereas additional sequences up to amino acid 178 are needed for high affinity Rab3A binding to rabphilin-3 (K(d) = 10-20 nm). In contrast, an N-terminal alpha-helix motif in aczonin, with sequence similarity to the Rab3-binding site of Rim1, did not bind Rab3A, -C, or -D or several other Rab proteins. These results were qualitatively confirmed in pull-down experiments with native, prenylated Rab3 from brain lysate in Triton X-100. Munc13 bound to the zinc finger domain of Rim1 but not to the rabphilin-3 or aczonin zinc fingers. Pull-down experiments from brain lysate in the presence of cholate as detergent detected binding to downstream Rim1 sequences, between amino acids 56 and 387, of syntaxin and of Rab3. The latter, however, was inhibited rather than stimulated by GTP.  相似文献   

18.
Rab15 is a novel endocytic Rab that counters the stimulatory effect of Rab5-GTP on early endocytic trafficking. Rab15 may interfere with Rab5 function directly by sequestering Rab5 effectors or indirectly through novel sets of effector interactions. To distinguish between these possibilities, we examined the effector binding properties of Rab15. Rab15 does not interact directly with the Rab5 effectors rabex-5 and rabaptin-5 in a yeast two-hybrid binding assay. Rather mammalian suppressor of Sec4 (Mss4) was identified as a binding partner for Rab15. Mss4 preferentially binds GDP-bound (T22N) and nucleotide-free (N121I) Rab15, consistent with the proposed role of Mss4 as a chaperone that stabilizes target Rabs in their nucleotide-free form. Mutational analysis of Rab15 indicates that lysine at position 48 (K48Q) is important for the binding of Rab15-GDP to Mss4. Moreover, the mutation K48Q counters the inhibitory phenotype of wild type Rab15 on receptor-mediated endocytosis in HeLa cells and homotypic endosome fusion in vitro without altering the relative amount of cell surface-associated transferrin receptor. Together, these data indicate a novel role for Mss4 as an effector for Rab15 in early endocytic trafficking.  相似文献   

19.
B7-independent inhibition of T cells by CTLA-4   总被引:4,自引:0,他引:4  
CTLA-4 is an inhibitory molecule that regulates T cell expansion and differentiation. CTLA-4 binding to B7-1/B7-2 is believed to be crucial for its inhibitory signal both by competing for CD28 binding to the same ligands and aggregating CTLA-4 to deliver negative signals. In this study, we demonstrate that B7 binding is not essential for CTLA-4 activity. CTLA-4 knockout T cells are hyperresponsive compared with wild-type T cells in B7-free settings. Expression of a B7-nonbinding CTLA-4 mutant inhibited T cell proliferation, cytokine production, and TCR-mediated ERK activation in otherwise CTLA-4-deficient T cells. Finally, transgenic expression of the ligand-nonbinding CTLA-4 mutant delayed the lethal lymphoproliferation observed in CTLA-4-deficient mice. These results suggest that ligand binding is not essential for the CTLA-4 function and supports an essential role for CTLA-4 signaling during T cell activation.  相似文献   

20.
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号