首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level resistance is caused by mutations of rsmG, which encodes an S-adenosylmethionine (SAM)-dependent 16S rRNA methyltransferase containing a SAM binding motif. Deletion of rsmG from wild-type Streptomyces coelicolor resulted in the acquisition of streptomycin resistance and the overproduction of the antibiotic actinorhodin. Introduction of wild-type rsmG into the deletion mutant completely abrogated the effects of the rsmG deletion, confirming that rsmG mutation underlies the observed phenotype. Consistent with earlier work using a spontaneous rsmG mutant, the strain carrying DeltarsmG exhibited increased SAM synthetase activity, which mediated the overproduction of antibiotic. Moreover, high-performance liquid chromatography analysis showed that the DeltarsmG mutant lacked a 7-methylguanosine modification in the 16S rRNA (possibly at position G518, which corresponds to G527 of Escherichia coli). Like certain rpsL mutants, the DeltarsmG mutant exhibited enhanced protein synthetic activity during the late growth phase. Unlike rpsL mutants, however, the DeltarsmG mutant showed neither greater stability of the 70S ribosomal complex nor increased expression of ribosome recycling factor, suggesting that the mechanism underlying increased protein synthesis differs in the rsmG and the rpsL mutants. Finally, spontaneous rsmG mutations arose at a 1,000-fold-higher frequency than rpsL mutations. These findings provide new insight into the role of rRNA modification in activating secondary metabolism in Streptomyces.  相似文献   

2.
The genes encoding the biosynthesis of the dipeptide bacilysin and its antibiotic constituent anticapsin were isolated from several strains of Bacillus subtilis as well as B. amyloliquefaciens and B. pumilus. The ywfBCDEF genes of B. subtilis 168 were shown to carry the biosynthetic core functions and were renamed bacABCDE. Mutation of the bacD gene or transformation of the bacABC genes into a B. subtilis (ywfA-bacABCDE) deletion mutant led to the accumulation of anticapsin, which was fourfold higher after transformation of the bacABC genes into a bacD mutant. The genes bacD and bacE proved to encode the functions of amino acid ligation and self-protection to bacilysin, respectively. Amplification of the bacABCDE gene cluster in a bacAB gene-deficient host strain of B. amyloliquefaciens resulted in a tenfold bacilysin overproduction. Some host strains required distinct glucosamine and yeast extract supplements in order to prevent suicidal effects of the recombinant antibiotic production. The bac genes from different Bacillus species revealed the same arrangement and 72.6–88.6% of sequence identity.  相似文献   

3.
4.
Bacillus subtilis mutants with high expression of the bacilysin operon ywfBCDEFG were isolated. Comparative genome sequencing analysis revealed that all of these mutants have a mutation in the scoC gene. The disruption of scoC by genetic engineering also resulted in increased expression of ywfBCDEFG. Primer extension and gel mobility shift analyses showed that the ScoC protein binds directly to the promoter region of ywfBCDEFG. Our results indicate that the transition state regulator ScoC, together with CodY and AbrB, negatively regulates bacilysin production in B. subtilis.Gram-positive model bacterium Bacillus subtilis produces the dipeptide antibiotic bacilysin, which consists of an l-alanine and an unusual amino acid, l-anticapsin (15). We previously reported that a polycistronic operon, ywfBCDEFG, and a monocistronic gene, ywfH, are required for bacilysin production (7). The gene products of ywfB and ywfG are thought to participate in the l-anticapsin biosynthesis pathway, while the ywfE gene product has been assigned as an amino acid ligase involved in alanine-anticapsin ligation (14). The protein encoded by the ywfF gene is necessary for self-protection against bacilysin (13). Thus, the ywfBCDEFG operon has an obligate role in bacilysin production.We previously showed that a certain rifampin (rifampicin) resistance mutation can activate the B. subtilis dormant secondary metabolism, neotrehalosadiamine (3,3′-diamino-3,3′-dideoxy-α,β-trehalose) synthesis (8). Subsequently, we attempted to activate bacilysin production in the same way. Unexpectedly, we found that the expression of the bacilysin operon ywfBCDEFG was induced by a mechanism independent of the rifampin resistance mutation. Although the expression of the bacilysin operon ywfBCDEFG was previously reported to be negatively regulated by transition state regulators CodY (7) and AbrB (11), the mechanism we found was apparently different from these known mechanisms. Here, we report a novel regulatory mechanism involved in bacilysin production.  相似文献   

5.
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances α-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing α-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in α-amylase production seen in the affected strain.  相似文献   

6.
Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and further elucidate how the presence of prophage may affect overall streptococcal survival, pathogenicity, and evolution.  相似文献   

7.
Certain chemical compounds increase mutation frequency of Escherichia coli B/r significantly when used in conjunction with nonlethal ultraviolet (UV) dosages. Studies were done to elucidate the mechanism of this enhancing mutational effect. Dark survival curves showed that 500 μg of caffeine per ml in the postirradiation medium markedly decreased survival to 60 ergs/mm2 of UV in strain B/r. Caffeine did not markedly decrease survival to UV in strain B/r WP-2 hcr. At least 90% of the mutations induced to streptomycin resistance by UV and 85% of those induced by UV with caffeine could be photoreversed. Experiments with thymine analogues suggested that thymine dimerization at the streptomycin locus was the primary premutational photoproduct induced by sublethal UV dosages. Caffeine did not interfere with the photoreversal of induced mutants, indicating that it probably does not bind to the photoreactivating enzyme or to a UV-induced lesion in the DNA. Addition of DNA or irradiated DNA with 500 μg of caffeine per ml resulted in no loss of the caffeine activity. The excision of UV-induced thymine-containing dimers from E. coli B/r T was investigated in the presence and absence of caffeine. Our results indicated that caffeine prevents excision of thymine dimers, presumably by binding to the excising enzyme. This binding results in an impairment of repair, which produces the increase in mutant numbers.  相似文献   

8.
Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild-type C. tepidum at 40°C on agar plates could be completely inhibited by 100 μg of gentamicin ml−1, 2 μg of erythromycin ml−1, 30 μg of chloramphenicol ml−1, or 1 μg of tetracycline ml−1 or a combination of 300 μg of streptomycin ml−1 and 150 μg of spectinomycin ml−1. Transformation was performed by spotting cells and DNA on an agar plate for 10 to 20 h. Transformation frequencies on the order of 10−7 were observed with gentamicin and erythromycin markers, and transformation frequencies on the order of 10−3 were observed with a streptomycin-spectinomycin marker. The frequency of spontaneous mutants resistant to gentamicin, erythromycin, or spectinomycin-streptomycin was undetectable or significantly lower than the transformation frequency. Transformation with the gentamicin marker was observed when the transforming DNA contained 1 or 3 kb of total homologous flanking sequence but not when the transforming DNA contained only 0.3 kb of homologous sequence. Linearized plasmids transformed at least an order of magnitude better than circular plasmids. This work forms a foundation for the systematic targeted inactivation of genes in C. tepidum, whose 2.15-Mb genome has recently been completely sequenced.  相似文献   

9.
We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods.  相似文献   

10.
Summary Production of the dipeptide antibiotic bacilysin byBacillus subtilis 168 was growth associated and showed no evidence of repression by glucose or sucrose. Carbohydrates other than glucose and sucrose yielded lower specific titers of bacilysin. Bacilysin production in three such carbon sources (maltose, xylose, ribose) was delayed until growth slowed down. Ammonium salts were poor for bacilysin production when used as the sole nitrogen source. When added to the standard medium containing glutamate, they suppressed antibiotic production. Aspartate was slightly better than glutamate for antibiotic production as sole nitrogen source. No other nitrogen source tested, including inorganic, organic or complex, approached the activity of glutamate or aspartate. When added to glutamate, casamino acids, phenylalanine and alanine (a substrate of bacilysin synthetase) suppressed bacilysin production while stimulating growth. Phosphate provided for optimum growth and production at 7.5 mM and both processes were inhibited at higher concentrations. Ferric citrate stimulated growth and inhibited bacilysin production, the effects being due to both the iron and the citrate components. Elimination of ferric citrate stimulated production as did increasing the concentration of Mn to its optimum concentration of 6.6×10–4M.  相似文献   

11.
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

12.
Previously, we demonstrated that Escherichia coli tolC mutations reduce the high-level resistance to tetracycline afforded by the transposon Tn10-encoded TetA pump from resistance at 200 μg/ml to resistance at 40 μg/ml. In this study, we found that the addition of an sbmA mutation to a tolC::Tn10 mutant exacerbates this phenotype: the double mutant did not form colonies, even in the presence of tetracycline at a concentration as low as 5 μg/ml. Inactivation of sbmA alone partially inhibited high-level tetracycline resistance, from resistance at 200 μg/ml to resistance at 120 μg/ml. There thus appears to be an additive effect of the mutations, resulting in almost complete suppression of the phenotypic expression of Tn10 tetracycline resistance.  相似文献   

13.
We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5′-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5′-deoxyadenosine to 5′-deoxyinosine as its major product but will also deaminate 5′-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5′-deoxyadenosine deaminase (DadD). The Km for 5′-deoxyadenosine was found to be 14.0 ± 1.2 μM with a kcat/Km of 9.1 × 109 M−1 s−1. Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5′-deoxyadenosine. Since 5′-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5′-deoxyadenosine, whereupon the 5′-deoxyribose moiety of 5′-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens.  相似文献   

14.
Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria.  相似文献   

15.
16.
17.
We report here that the naturally occurring choline ester choline-O-sulfate serves as an effective compatible solute for Bacillus subtilis, and we have identified a high-affinity ATP-binding cassette (ABC) transport system responsible for its uptake. The osmoprotective effect of this trimethylammonium compound closely matches that of the potent and widely employed osmoprotectant glycine betaine. Growth experiments with a set of B. subtilis strains carrying defined mutations in the glycine betaine uptake systems OpuA, OpuC, and OpuD and in the high-affinity choline transporter OpuB revealed that choline-O-sulfate was specifically acquired from the environment via OpuC. Competition experiments demonstrated that choline-O-sulfate functioned as an effective competitive inhibitor for OpuC-mediated glycine betaine uptake, with a Ki of approximately 4 μM. Uptake studies with [1,2-dimethyl-14C]choline-O-sulfate showed that its transport was stimulated by high osmolality, and kinetic analysis revealed that OpuC has high affinity for choline-O-sulfate, with a Km value of 4 ± 1 μM and a maximum rate of transport (Vmax) of 54 ± 3 nmol/min · mg of protein in cells grown in minimal medium with 0.4 M NaCl. Growth studies utilizing a B. subtilis mutant defective in the choline to glycine betaine synthesis pathway and natural abundance 13C nuclear magnetic resonance spectroscopy of whole-cell extracts from the wild-type strain demonstrated that choline-O-sulfate was accumulated in the cytoplasm and was not hydrolyzed to choline by B. subtilis. In contrast, the osmoprotective effect of acetylcholine for B. subtilis is dependent on its biotransformation into glycine betaine. Choline-O-sulfate was not used as the sole carbon, nitrogen, or sulfur source, and our findings thus characterize this choline ester as an effective compatible solute and metabolically inert stress compound for B. subtilis. OpuC mediates the efficient transport not only of glycine betaine and choline-O-sulfate but also of carnitine, crotonobetaine, and γ-butyrobetaine (R. Kappes and E. Bremer, Microbiology 144:83–90, 1998). Thus, our data underscore its crucial role in the acquisition of a variety of osmoprotectants from the environment by B. subtilis.  相似文献   

18.
Synthetic media for streptomycin fermentation were studied to determine which media gave highest yields of streptomycin. The effect of salts on streptomycin production by Streptomyces griseus was examined, and a suitable combination of salts was established in a glucose-casein medium. This medium yielded 3,000 μg/ml of the antibiotic with an inoculum of 1.6%. Substitution of amino acids for casein was examined. Of 17 amino acids tested, best results were obtaind with sodium aspartate. Substitution of ammonium salts was tried, and an excellent streptomycin yield was obtained with a medium containing ammonium citrate.  相似文献   

19.
Spectral analysis indicated the presence of a cytochrome cbb3 oxidase under microaerobic conditions in Azospirillum brasilense Sp7 cells. The corresponding genes (cytNOQP) were isolated by using PCR. These genes are organized in an operon, preceded by a putative anaerobox. The phenotype of an A. brasilense cytN mutant was analyzed. Under aerobic conditions, the specific growth rate during exponential phase (μe) of the A. brasilense cytN mutant was comparable to the wild-type specific growth rate (μe of approximately 0.2 h−1). In microaerobic NH4+-supplemented conditions, the low respiration of the A. brasilense cytN mutant affected its specific growth rate (μe of approximately 0.02 h−1) compared to the wild-type specific growth rate (μe of approximately 0.2 h−1). Under nitrogen-fixing conditions, both the growth rates and respiration of the wild type were significantly diminished in comparison to those under NH4+-supplemented conditions. Differences in growth rates and respiration between the wild type and the A. brasilense cytN mutant were less pronounced under these nitrogen-fixing conditions (μe of approximately 0.03 h−1 for the wild type and 0.02 h−1 for the A. brasilense cytN mutant). The nitrogen-fixing capacity of the A. brasilense cytN mutant was still approximately 80% of that determined for the wild-type strain. This leads to the conclusion that the A. brasilense cytochrome cbb3 oxidase is required under microaerobic conditions, when a high respiration rate is needed, but that under nitrogen-fixing conditions the respiration rate does not seem to be a growth-limiting factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号