首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene therapy has emerged from the idea of inserting a wild-type copy of a gene in order to restore the proper expression and function of a damaged gene. Initial efforts have focused on finding the proper vector and delivery method to introduce a corrected gene to the affected tissue or cell type. Even though these first attempts are clearly promising, several problems remain unsolved. A major problem is the influence of chromatin structure on transgene expression. To overcome chromatin-dependent repressive transgenic states, researchers have begun to use chromatin regulatory elements to drive transgene expression. Insulators or chromatin boundaries are able to protect a transgene against chromatin position effects at their genomic integration sites, and they are able to maintain transgene expression for long periods of time. Therefore, these elements may be very useful tools in gene therapy applications for ensuring high-level and stable expression of transgenes.  相似文献   

2.
3.
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.  相似文献   

4.
Lactococcus lactis is a gram-positive bacterium that is widely used in the food industry and is therefore desirable as a candidate for the production and secretion of recombinant proteins. Previously, we generated a L. lactis strain that expressed and secreted the antimicrobial cell wall-lytic enzyme lysostaphin. To identify lactococcal gene products that affect the production of lysostaphin, we isolated and characterized mutants generated by random transposon mutagenesis that had altered lysostaphin activity. Out of 35,000 mutants screened, only one with no lysostaphin activity was identified, and it was found to contain an insertion in the lysostaphin expression cassette. Ten mutants with higher lysostaphin activity contained insertions in only four different genes, which encode an uncharacterized putative transmembrane protein (llmg_0609) (three mutants), an enzyme catalyzing the first step in peptidoglycan biosynthesis (murA2) (five mutants), a putative regulator of peptidoglycan modification (trmA) (one mutant), and an uncharacterized enzyme possibly involved in ubiquinone biosynthesis (llmg_2148) (one mutant). These mutants were found to secrete larger amounts of lysostaphin than the control strain (MG1363[lss]), and the greatest increase in secretion was 9.8- to 16.1-fold, for the llmg_0609 mutants. The lysostaphin-oversecreting llmg_0609, murA2, and trmA mutants were also found to secrete larger amounts of another cell wall-lytic enzyme (the Listeria monocytogenes bacteriophage endolysin Ply511) than the control strain, indicating that the phenotype is not limited to lysostaphin.  相似文献   

5.
Halohydrin dehalogenases are attractive biocatalysts in producing a series of important chiral building blocks. Recombinant expression of halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) in Escherichia coli using T7 promoter-based pGEF(+) system revealed much lower expression level than that of the well-studied halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC). In this study, we changed the codon usage in the 5′-end of hheA gene to improve the expression yield of HheA. Our results showed that the expression of HheA could be largely improved by the replacement of G-rich +2 codon (adjacent to the start codon) with less G-containing codons. The expression of one of the resulting mutants HheA-D1 (replaced +2 codon GTG with CCA) was about 4-fold higher and purified yields about 8-fold greater than that of the wild-type HheA. Moreover, the expression level of the resulting HheA variants correlated well with the minimal folding free energy (ΔG) of the mRNA secondary structure surrounding the 5′-end region of the genes. These findings suggested that the G-rich +2 codon of hheA gene might be the main suppressive factor for limiting the recombinant expression of HheA and that +2 codon optimization strategy could be used as a general tool in modulating recombinant protein production in E. coli.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) antagonizes innate restriction factors in order to infect and persistently replicate in a host. In a previous study, we demonstrated that HIV-1 NL4-3 with a simian immunodeficiency virus mne (SIVmne) vif gene substitution (HSIV-vif-NL4-3) could infect and replicate in pig-tailed macaques (PTM), indicating that APOBEC3 proteins are primary barriers to transmission. Because viral replication was persistent but low, we hypothesized that HSIV-vif-NL4-3 may be suppressed by type I interferons (IFN-I), which are known to upregulate the expression of innate restriction factors. Here, we demonstrate that IFN-α more potently suppresses HSIV-vif-NL4-3 in PTM CD4+ T cells than it does pathogenic SIVmne027. Importantly, we identify a variant (HSIV-vif-Yu2) that is resistant to IFN-α, indicating that the IFN-α-induced barrier can be overcome by HSIV-vif chimeras in PTM CD4+ T cells. Interestingly, HSIV-vif-Yu2 and HSIV-vif-NL4-3 are similarly restricted by PTM BST2/Tetherin, and neither virus downregulates it from the surface of infected PTM CD4+ T cells. Resistance to IFN-α-induced restriction appears to be conferred by a determinant in HSIV-vif-Yu2 that includes env su. Finally, we show that the Yu-2 env su allele may overcome an IFN-α-induced barrier to entry. Together, our data demonstrate that the prototype macaque-tropic HIV-1 clones based on NL4-3 may not sufficiently antagonize innate restriction in PTM cells. However, variants with resistance to IFN-α-induced restriction factors in PTM CD4+ T cells may enhance viral replication by overcoming a barrier early in the viral replication cycle.  相似文献   

7.
In most eudicot and monocot species, interspecific and interploidy crosses generally display abnormalities in the endosperm that are the major cause of a post‐zygotic hybridization barrier. In some eudicot species, however, this type of hybridization barrier can be overcome by the manipulation of ploidy levels of one parental species, suggesting that the molecular mechanisms underlying the species hybridization barrier can be circumvented by genome dosage. We previously demonstrated that endosperm barriers in interspecific and interploidy crosses in the genus Oryza involve overlapping but different mechanisms. This result contrasts with those in the genus Arabidopsis, which shows similar outcomes in both interploidy and interspecific crosses. Therefore, we postulated that an exploration of pathways for overcoming the species hybridization barrier in Oryza endosperm, by manipulating the ploidy levels in one parental species, might provide novel insights into molecular mechanisms. We showed that fertile hybrid seeds could be produced by an interspecific cross of female tetraploid Oryza sativa and male diploid Oryza longistaminata. Although the rate of nuclear divisions did not return to normal levels in the hybrid endosperm, the timing of cellularization, nucellus degeneration and the accumulation of storage products were close to normal levels. In addition, the expression patterns of the imprinted gene MADS87 and YUCCA11 were changed when the species barrier was overcome. These results suggest that the regulatory machinery for developmental transitions and imprinted gene expression are likely to play a central role in overcoming species hybridization barriers by genome dosage in the genus Oryza.  相似文献   

8.
Abstract

Staphylococcus aureus, among other staphylococcal species, developed multidrug resistance and causes serious health risks that require complex treatments. Therefore, the development of novel and effective strategies to combat these bacteria has been gaining importance. Since Staphylococcus simulans lysostaphin is a peptidoglycan hydrolase effective against staphylococcal species, the enzyme has a significant potential for biotechnological applications. Despite promising results of lysostaphin as a bacteriocin capable of killing staphylococcal pathogens, it is still not widely used in healthcare settings due to its high production cost. In this study, medium engineering techniques were applied to improve the expression yield of recombinant lysostaphin in E. coli. A new effective inducible araBAD promoter system and different mediums were used to enhance lysostaphin production. Our results showed that the composition of autoinduction media enhanced the amount of lysostaphin production 5-fold with the highest level of active lysostaphin at 30?°C. The production cost of 1000?U of lysostaphin was determined as 4-fold lower than the previously proposed technologies. Therefore, the currently developed bench scale study has a great potential as a large-scale fermentation procedure to produce lysostaphin efficiently.  相似文献   

9.
Human beta-defensin-2 (hBD2) is a small antimicrobial peptide with potential as a therapeutic agent. The effect of codon usage on the expression of hBD2 in Escherichia coli was studied. Two coding sequences encoding the same hBD2 precursor were both expressed as fusion protein with thioredoxin in E. coli BL21 (DE3). One is the wild-type human cDNA and the other is a gene synthesized by a PCR-based method in which rare codons were altered to those frequently used in E. coli. The expression level of recombinant hBD2 was over 50% of the total cellular protein when the synthetic gene with preferential codons was employed which was a 9-fold enhancement over the wild-type cDNA. The result shows the codon bias of the host was a major barrier in high-level expression of recombinant hBD2 and suggests a similar approach may be used in the expression of other defensins in E. coli.  相似文献   

10.
Alphavirus replicon vectors are well suited for applications where transient, high-level expression of a heterologous gene is required. Replicon vector expression in cells leads to inhibition of host macromolecular synthesis, culminating in eventual cell death by an apoptotic mechanism. For many applications, including gene expression studies in cultured cells, a longer duration of transgene expression without resulting cytopathic effects is useful. Recently, noncytopathic Sindbis virus (SIN) variants were isolated in BHK cells, and the mutations responsible were mapped to the protease domain of nonstructural protein 2 (nsP2). We report here the isolation of additional variants of both SIN and Semliki Forest virus (SFV) replicons encoding the neomycin resistance gene that can establish persistent replication in BHK cells. The SIN and SFV variant replicons resulted from previously undescribed mutations within one of three discrete regions of the nsP2 gene. Differences among the panel of variants were observed in processing of the nonstructural polyprotein and in the ratios of subgenomic to genomic RNAs. Importantly, high-level expression of a heterologous gene was retained with most replicons. Finally, in contrast to previous studies, efficient packaging was obtained with several of the variant replicons. This work expands the utility of noncytopathic replicons and the understanding of how alphavirus replicons establish persistent replication in cultured cells.  相似文献   

11.
Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by SigmaAldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.  相似文献   

12.
The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.  相似文献   

13.
14.
Monoclonal antibodies are critically important biologics as the largest class of molecules used to treat cancers, rheumatoid arthritis, and other chronic diseases. Antibody glycosylation is a critical quality attribute that has ramifications for patient safety and physiological efficacy—one that can be modified by such factors as media formulation and process conditions during production. Using a design-of-experiments approach, we examined the effect of 2-F-peracetyl fucose (2FP), uridine, and galactose on cell growth and metabolism, titer, and gene expression of key glycosylation-related proteins, and report how the glycoform distribution changed from Days 4 to 7 in a batch process used for IgG1 production from Chinese hamster ovary cells. We observed major glycosylation changes upon supplement addition, where the addition of 2FP decreased antibody fucosylation by up to 48%, galactose addition increased galactosylation by up to 21%, and uridine addition decreased fucosylation and increased galactosylation by 6% and 2%, respectively. Despite having major effects on glycosylation, neither galactose nor 2FP significantly affected cell culture growth, metabolism, or titer. Uridine improved peak cell densities by 23% but also reduced titer by ∼30%. The supplements caused significant changes in gene expression by Day 4 of the cultures where 2FP addition significantly reduced fucosyltransferase 8 and nucleotide sugar transporter gene expression (by ∼2-fold), and uridine addition significantly increased expression of UDP-GlcNAcT (SLC35A3) and B4GALT1–6 genes (by 1.5–3-fold). These gene expression data alongside glycosylation, metabolic, and growth data improve our understanding of the cellular mechanisms affected by media supplementation and suggest approaches for modifying antibody glycosylation in antibody production processes.  相似文献   

15.
基于重组溶葡球菌酶和ATP生物发光法建立特异定量检测金黄色葡萄球菌的方法。优化设计合成溶葡球菌酶序列,构建重组表达载体pQE30-Lys,转化至大肠杆菌M15并诱导表达,镍柱纯化得到目的蛋白。利用重组溶葡球菌酶和ATP生物发光法特异定量检测金黄色葡萄球菌并与平板计数对比。成功表达了重组溶葡球菌酶,并建立了特异定量检测金黄色葡萄球菌的方法,与平板计数具有显著线性关系。本研究建立的将重组溶葡球菌酶和ATP生物发光法相结合的检测方法操作快捷简单,具有良好的应用前景。  相似文献   

16.
The gene of microbial lysozyme (lyz) of S. aureus 118 and the gene of lysostaphin (lzf) of S. aureus RN 3239 were cloned and their expression in B. subtilis cells was shown. Lysozyme production in B. subtilis recombinant clone pLF14-Lyz, obtained as the result of cloning, was 2.5-fold greater than lysozyme production in S. aureus wild strain 118. Lysostaphin production in B. subtilis recombinant strain pLF14-Lzf which had inherited the cloned genes was approximately equal to lysostaphin production observed in S. aureus initial strain RN 3239. The production of lysozyme and lysostaphin in the cells of B. subtilis recombinant strains was observed at 30 degrees C and pH 5.5, while in S. aureus initial strains 118 and RN 3239 bacteria produced lysozyme and lysostaphin at 37 degrees C and pH 7.5 respectively.  相似文献   

17.
18.
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.  相似文献   

19.
20.
In order for proteins to be used as pharmaceuticals, delivery technologies need to be developed to overcome biochemical and anatomical barriers to protein drug transport, to protect proteins from systemic degradation, and to target the drug action to specific sites. Protein transduction domains (PTDs) are used for the non-specific transduction of bio-active cargo, such as proteins, genes, and particles, through cellular membranes to overcome biological barriers. Metallothionein (MT) is a low molecular weight intra-cellular protein that consists of 61 amino acids, including 20 cysteine residues, and is over-expressed under stressful conditions. Although MT has the potential to improve the viability of islet cells and cardiomyocytes by inhibiting diabetic-induced apoptosis and by removing reactive oxygen species (ROS), and thereby prevent or reduce diabetes and diabetic complications, all MT applications have been made for gene therapy or under induced over-expression of endogenous MT. To overcome the drawbacks of ineffective intra-cellular MT protein uptake, a human MT gene was cloned and fused with protein transduction domains (PTDs), such as HIV-1 Tat and undeca-arginine, in a bacterial expression vector to produce PTD–MT fusion proteins. The expression and purification of three types of proteins were optimized by adding Zn ions to maintain their stability and functionality mimicking intra-cellular stable conformation of MT as a Zn–MT cluster. The Zn–MT cluster showed better stability than MT in vitro. PTD–MT fusion proteins strongly protected Ins-1 beta cells against oxidative stress and apoptosis induced by glucolipotoxicity with or without hypoxia, and also protected H9c2 cardiomyocytes against hyperglycemia-induced apoptosis with or without hypoxia. PTD–MT recombinant fusion proteins may be useful protein therapeutics for the treatment or prevention of diabetes and diabetes-related complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号