首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel mobility shift assays with His-tagged BldD isolated from Escherichia coli have illustrated that BldD is capable of specifically recognizing its own promoter region. DNase I and hydroxyl radical footprinting assays have served to delimit the BldD binding site, revealing that BldD recognizes and binds to a site just upstream from, and overlapping with, the -10 region of the promoter. How BldD binds to its promoter and the effect this binding has on the expression of BldD are discussed.  相似文献   

2.
The interferon-induced transmembrane (IFITM) proteins are a family of small membrane proteins that inhibit the cellular entry of several genera of viruses. These proteins had been predicted to adopt a two-pass, type III transmembrane topology with an intracellular loop, two transmembrane helices (TM1 and TM2), and extracellular N and C termini. Recent work, however, supports an intramembrane topology for the helices with cytosolic orientation of both termini. Here we determined the topology of murine Ifitm3. We found that the N terminus of Ifitm3 could be stained by antibodies at the cell surface but that this conformation was cell type-dependent and represented a minority of the total plasma membrane pool. In contrast, the C terminus was readily accessible to antibodies at the cell surface and extracellular C termini comprised most or all of those present at the plasma membrane. The addition of a C-terminal KDEL endoplasmic reticulum retention motif to Ifitm3 resulted in sequestration of Ifitm3 in the ER, demonstrating an ER-luminal orientation of the C terminus. C-terminal, but not N-terminal, epitope tags were also degraded within lysosomes, consistent with their luminal orientation. Furthermore, epitope-tagged Ifitm3 TM2 functioned as a signal anchor sequence when expressed in isolation. Collectively, our results demonstrate a type II transmembrane topology for Ifitm3 and will provide insight into its interaction with potential targets and cofactors.  相似文献   

3.
4.
To understand how YidC and SecYEG function together in membrane protein topogenesis, insertion and folding of the lactose permease of Escherichia coli (LacY), a 12-transmembrane helix protein LacY that catalyzes symport of a galactoside and an H+, was studied. Although both the SecYEG machinery and signal recognition particle are required for insertion of LacY into the membrane, YidC is not required for translocation of the six periplasmic loops in LacY. Rather, YidC acts as a chaperone, facilitating LacY folding. Upon YidC depletion, the conformation of LacY is perturbed, as judged by monoclonal antibody binding studies and by in vivo cross-linking between introduced Cys pairs. Disulfide cross-linking also demonstrates that YidC interacts with multiple transmembrane segments of LacY during membrane biogenesis. Moreover, YidC is strictly required for insertion of M13 procoat protein fused into the middle cytoplasmic loop of LacY. In contrast, the loops preceding and following the inserted procoat domain are dependent on SecYEG for insertion. These studies demonstrate close cooperation between the two complexes in membrane biogenesis and that YidC functions primarily as a foldase for LacY.  相似文献   

5.
Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Due to the existence of degenerate peptides and 'one-hit wonders', it is very difficult to determine which proteins are present in the sample. In this paper, we review existing protein inference methods and classify them according to the source of peptide identifications and the principle of algorithms. It is hoped that the readers will gain a good understanding of the current development in this field after reading this review and come up with new protein inference algorithms.  相似文献   

6.
7.
No abstract available.  相似文献   

8.
类泛素蛋白--SUMO   总被引:10,自引:0,他引:10  
SUMO(small ubiquitin-related modifier)是泛素(ubiquitin)类蛋白家族的重要成员之一。尽管SUMO的生化反应途径与泛素相似,但不像泛素那样诱导底物蛋白降解。SUMO化能够使蛋白质更加稳定,进而调节许多关键的细胞活动。现从分类、结构、生化途径和生物学功能等方面介绍SUMO及SUMO化过程。  相似文献   

9.
10.
The actin cytoskeleton is a major regulator of cell morphogenesis and responses to biotic and abiotic stimuli. The organization and activities of the cytoskeleton are choreographed by hundreds of accessory proteins. Many actin-binding proteins are thought to be stimulus-response regulators that bind to signaling phospholipids and change their activity upon lipid binding. Whether these proteins associate with and/or are regulated by signaling lipids in plant cells remains poorly understood. Heterodimeric capping protein (CP) is a conserved and ubiquitous regulator of actin dynamics. It binds to the barbed end of filaments with high affinity and modulates filament assembly and disassembly reactions in vitro. Direct interaction of CP with phospholipids, including phosphatidic acid, results in uncapping of filament ends in vitro. Live-cell imaging and reverse-genetic analyses of cp mutants in Arabidopsis (Arabidopsis thaliana) recently provided compelling support for a model in which CP activity is negatively regulated by phosphatidic acid in vivo. Here, we used complementary biochemical, subcellular fractionation, and immunofluorescence microscopy approaches to elucidate CP-membrane association. We found that CP is moderately abundant in Arabidopsis tissues and present in a microsomal membrane fraction. Sucrose density gradient separation and immunoblotting with known compartment markers were used to demonstrate that CP is enriched on membrane-bound organelles such as the endoplasmic reticulum and Golgi. This association could facilitate cross talk between the actin cytoskeleton and a wide spectrum of essential cellular functions such as organelle motility and signal transduction.The cellular levels of membrane-associated lipids undergo dynamic changes in response to developmental and environmental stimuli. Different species of phospholipids target specific proteins and this often affects the activity and/or subcellular localization of these lipid-binding proteins. One such membrane lipid, phosphatidic acid (PA), serves as a second messenger and regulates multiple developmental processes in plants, including seedling development, root hair growth and pattern formation, pollen tube growth, leaf senescence, and fruit ripening. PA levels also change during various stress responses, including high salinity and dehydration, pathogen attack, and cold tolerance (Testerink and Munnik, 2005, 2011; Wang, 2005; Li et al., 2009). In mammalian cells, PA is critical for vesicle trafficking events, such as vesicle budding from the Golgi apparatus, vesicle transport, exocytosis, endocytosis, and vesicle fusion (Liscovitch et al., 2000; Freyberg et al., 2003; Jenkins and Frohman, 2005).The actin cytoskeleton and a plethora of actin-binding proteins (ABPs) are well-known targets and transducers of lipid signaling (Drøbak et al., 2004; Saarikangas et al., 2010; Pleskot et al., 2013). For example, several ABPs have the ability to bind phosphoinositide lipids, such as phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. The severing or actin filament depolymerizing proteins such as villin, cofilin, and profilin are inhibited when bound to PtdIns(4,5)P2. One ABP appears to be strongly regulated by another phospholipid; human gelsolin binds to lysophosphatidic acid and its filament severing and barbed-end capping activities are inhibited by this biologically active lipid (Meerschaert et al., 1998). Gelsolin is not, however, regulated by PA (Meerschaert et al., 1998), nor are profilin (Lassing and Lindberg, 1985), α-actinin (Fraley et al., 2003), or chicken CapZ (Schafer et al., 1996).The heterodimeric capping protein (CP) from Arabidopsis (Arabidopsis thaliana) also binds to and its activity is inhibited by phospholipids, including both PtdIns(4,5)P2 and PA (Huang et al., 2003, 2006). PA and phospholipase D activity have been implicated in the actin-dependent tip growth of root hairs and pollen tubes (Ohashi et al., 2003; Potocký et al., 2003; Samaj et al., 2004; Monteiro et al., 2005a; Pleskot et al., 2010). Exogenous application of PA causes an elevation of actin filament levels in suspension cells, pollen, and Arabidopsis epidermal cells (Lee et al., 2003; Potocký et al., 2003; Huang et al., 2006; Li et al., 2012; Pleskot et al., 2013). Capping protein (CP) binds to the barbed end of actin filaments with high (nanomolar) affinity, dissociates quite slowly, and prevents the addition of actin subunits at this end (Huang et al., 2003, 2006; Kim et al., 2007). In the presence of phospholipids, AtCP is not able to bind to the barbed end of actin filaments (Huang et al., 2003, 2006). Furthermore, capped filament ends are uncapped by the addition of PA, allowing actin assembly from a pool of profilin-actin (Huang et al., 2006). Collectively, these data lead to a simple model whereby CP, working in concert with profilin-actin, serves to maintain tight regulation of actin assembly at filament barbed ends (Huang et al., 2006; Blanchoin et al., 2010; Henty-Ridilla et al., 2013; Pleskot et al., 2013). Furthermore, the availability of CP for filament ends can be modulated by fluxes in signaling lipids. Genetic evidence for this model was recently obtained by analyzing the dynamic behavior of actin filament ends in living Arabidopsis epidermal cells after treatment with exogenous PA (Li et al., 2012). Specifically, changes in the architecture of cortical actin arrays and dynamics of individual actin filaments that are induced by PA treatment were found to be attenuated in cp mutant cells (Li et al., 2012; Pleskot et al., 2013).Structural characterization of chicken CapZ demonstrates that the α- and β-subunits of the heterodimer form a compact structure resembling a mushroom with pseudo-two-fold rotational symmetry (Yamashita et al., 2003). Actin- and phospholipid-binding sites are conserved on the C-terminal regions, sometimes referred to as tentacles, which comprise amphipathic α-helices (Cooper and Sept, 2008; Pleskot et al., 2012). Coarse-grained molecular dynamics (CG-MD) simulations recently revealed the mechanism of chicken and AtCP association with membranes (Pleskot et al., 2012). AtCP interacts specifically with lipid bilayers through interactions between PA and the amphipathic helix of the α-subunit tentacle. Extensive polar contacts between lipid headgroups and basic residues on CP (including K278, which is unique to plant CP), as well as partial embedding of nonpolar groups into the lipid bilayer, are observed (Pleskot et al., 2012). Moreover, a glutathione S-transferase fusion protein containing the C-terminal 38 amino acids from capping protein α subunit (CPA) is sufficient to bind PA-containing liposomes in vitro (Pleskot et al., 2012). Collectively, these findings lead us to predict that AtCP will behave like a membrane-associated protein in plant cells.Additional evidence from animal and microbial cells supports the association of CP with biological membranes. In Acanthamoeba castellanii, CP is localized primarily to the hyaline ectoplasm in a region of the cytoplasm just under the plasma membrane that contains a high concentration of actin filaments (Cooper et al., 1984). Localization of CP with regions rich in actin filaments and with membranes was supported by subcellular fractionation experiments, in which CP was associated with a crude membrane fraction that included plasma membrane (Cooper et al., 1984). Further evidence demonstrates that CP localizes to cortical actin patches at sites of new cell wall growth in budding yeast (Saccharomyces cerevisiae), including the site of bud emergence. By contrast, CP did not colocalize with actin cables in S. cerevisiae (Amatruda and Cooper, 1992). CP may localize to these sites by direct interactions with membrane lipids, through binding the ends of actin filaments, or by association with another protein different from actin. In support of this hypothesis, GFP-CP fusion proteins demonstrate that sites of actin assembling in living cells contain both CP and the actin-related protein2/3 (Arp2/3) complex, and CP is located in two types of structures: (1) motile regions of the cell periphery, which reflect movement of the edge of the lamella during extension and ruffling; and (2) dynamic spots within the lamella (Schafer et al., 1998). CP has been colocalized to the F-actin patches in fission yeast (Schizosaccharomyces pombe; Kovar et al., 2005), which promotes Arp2/3-dependent nucleation and branching and limits the extent of filament elongation (Akin and Mullins, 2008). These findings lend additional support for a model whereby CP cooperates with the Arp2/3 complex to regulate actin dynamics (Nakano and Mabuchi, 2006). Activities and localization of other plant ABPs are linked to membranes. Membrane association has been linked to the assembly status of the ARP2/3 complex, an actin filament nucleator, in Arabidopsis (Kotchoni et al., 2009). SPIKE1 (SPK1), a Rho of plants (Rop)-guanine nucleotide exchange factor (GEF) and peripheral membrane protein, maintains the homeostasis of the early secretory pathway and signal integration during morphogenesis through specialized domains in the endoplasmic reticulum (ER; Zhang et al., 2010). Furthermore, Nck-associated protein1 (NAP1), a component of the suppressor of cAMP receptor/WASP-family verprolin homology protein (SCAR/WAVE) complex, strongly associates with membranes and is particularly enriched in ER membranes (Zhang et al., 2013a). Finally, a superfamily of plant ABPs, called NETWORKED proteins, was recently discovered; these link the actin cytoskeleton to various cellular membranes (Deeks et al., 2012; Hawkins et al., 2014; Wang et al., 2014).In this work, we demonstrate that CP is a membrane-associated protein in Arabidopsis. To our knowledge, this is the first direct evidence for CP-membrane association in plants. This interaction likely targets CP to cellular compartments such as the ER and Golgi. This unique location may allow CP to remodel the actin cytoskeleton in the vicinity of endomembrane compartments and/or to respond rapidly to fluxes in signaling lipids.  相似文献   

11.

Background

Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming.

Methodology/Principal Findings

Here we report a novel multifunctional green fluorescent protein (mfGFP) tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8×His), streptavidin-binding peptide (SBP), and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP) with 8×His and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM). These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry.

Conclusions and Significance

The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.  相似文献   

12.
13.
《Journal of molecular biology》2019,431(17):3179-3190
Stress proteins promote cell survival by monitoring protein homeostasis in cells and organelles. YcjX is a conserved protein of unknown function, which is highly upregulated in response to acute and chronic stress. Notably, heat shock induction of ycjX exceeded even levels observed for major stress-induced chaperones, including GroEL, ClpB, and HtpG, which use ATP as energy source. YcjX features a Walker-type nucleotide-binding domain indicating that YcjX might function as a molecular chaperone. Here, we present the first crystal structure of YcjX from Shewanella oneidensis solved at 1.9-Å resolution by SAD phasing. We show that YcjX is a GTP-binding protein that shares at its core the canonical alpha-beta domain of p21ras (Ras). However, unlike Ras, YcjX features several unique insertions, including an entirely α-helical domain not previously observed in Ras-like GTPases. We note that this helical domain is reminiscent of a similar domain in the Gα subunit of heterotrimeric G proteins, supporting a potential role for YcjX as a signal transducer of stress responses. To elucidate the mechanism of GTP hydrolysis, we determined crystal structures of YcjX bound to GDP and GDPCP, respectively, which crystallized in three different nucleotide switch conformations. Supported by targeted mutagenesis experiments, we show that YcjX utilizes a non-canonical switch 2′ motif not previously observed in Ras-like GTPases. Together, our structures provide atomic snapshots of YcjX in different functional states, illustrating the structural determinants for stress signaling.  相似文献   

14.
Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a 13C-labeled retinal cofactor and extensively 13C-15N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications.  相似文献   

15.
To investigate the relationship between a protein’s sequence and its biophysical properties, we studied the effects of more than 100 mutations in Avena sativa light-oxygen-voltage domain 2, a model protein of the Per-Arnt-Sim family. The A. sativa light–oxygen–voltage domain 2 undergoes a photocycle with a conformational change involving the unfolding of the terminal helices. Whereas selection studies typically search for winners in a large population and fail to characterize many sites, we characterized the biophysical consequences of mutations throughout the protein using NMR, circular dichroism, and ultraviolet/visible spectroscopy. Despite our intention to introduce highly disruptive substitutions, most had modest or no effect on function, and many could even be considered to be more photoactive. Substitutions at evolutionarily conserved sites can have minimal effect, whereas those at nonconserved positions can have large effects, contrary to the view that the effects of mutations, especially at conserved positions, are predictable. Using predictive models, we found that the effects of mutations on biophysical function and allostery reflect a complex mixture of multiple characteristics including location, character, electrostatics, and chemistry.  相似文献   

16.
Heterotrimeric G-proteins and their regulators are emerging as important players in modulating microtubule polymerization dynamics and in spindle force generation during cell division in C. elegans, D. melanogaster, and mammals. We recently demonstrated that RGS14 is required for completion of the first mitotic division of the mouse embryo, and that it regulates microtubule organization in vivo. Here, we demonstrate that RGS14 is a microtubule associated protein and a component of the mitotic spindle that may regulate microtubule polymerization and spindle organization. Taxol-stabilized tubulin, but not depolymerized tubulin co-immunoprecipitates with RGS14 from cell extracts. Furthermore, RGS14 co-purifies with tubulin from porcine brain following multiple rounds of microtubule polymerization/depolymerization and binds directly to microtubules formed in vitro from pure tubulin (KD=1.3 +/- 0.3 ?M). Both RGS14 and G?i1 in the presence of exogenous GTP promote tubulin polymerization, which is dependent on additional microtubule associated proteins. However, preincubation of RGS14 with G?i1-GDP precludes either from promoting microtubule polymerization, suggesting that a functional GTP/GDP cycle is necessary. Finally, we show that RGS14 is a component of mitotic asters formed in vitro from HeLa cell extracts and that depletion of RGS14 from cell extracts blocks aster formation. Collectively, these results show that RGS14 is a microtubule associated protein that may modulate microtubule dynamics and spindle formation.  相似文献   

17.
Analysis of crystallized protein structures suggests that globular proteins are organized as consecutively connected units of 25-35 residues. These units are closed loops, that is returns of the polypeptide chain trajectory to a close contact with itself. This universal feature of apparently polymer-statistical nature is a basis for a principally novel view on the globular proteins as loop fold structures. The same unit size has been detected in protein sequences translated from complete prokaryotic genomes by positional autocorrelation analysis, which strongly indicates the evolutionary connection of the units. The units are further characterized by prototype sequences matching to their numerous derivatives in the translated genomes. The matches to five strongest prokaryotic prototypes and three prototypes of C. elegans are identified in the sequences of crystallized proteins, and their structures analyzed. Corresponding segments of the polypeptide chains in majority of cases form closed loops, though evolutionary fate of every prototype element is shown to be rather diverse. Then loop ends can be separated by a sequence-wise distant segments and stabilized by the spatial interactions in the context of the overall globular structure. The units belong to a presumably limited spectrum of the sequence prototypes, full repertoire of which would constitute a proteomic code.  相似文献   

18.
19.
Protein breakdown in pulse-labelled and longlabelled cells of Arthrobacter S 1-55, a psychrotrophic bacterium, has been assessed at different temperatures. The temperature at which the cells were grown and labelled affected the breakdown of pulsed-labelled but not long-labelled proteins. Inhibitors of ATP synthesis inhibited proteolysis. Miscoding antibiotics stimulated the production of rapidly degradable proteins.  相似文献   

20.
BAX is a pro-apoptotic member of the BCL-2 protein family. At the onset of apoptosis, monomeric, cytoplasmic BAX is activated and translocates to the outer mitochondrial membrane, where it forms an oligomeric pore. The chemical mechanism of BAX activation is controversial, and several in vitro and in vivo methods of its activation are known. One of the most commonly used in vitro methods is activation with detergents, such as n-octyl glucoside. During BAX activation with n-octyl glucoside, it has been shown that BAX forms high molecular weight complexes that are larger than the combined molecular weight of BAX monomer and one detergent micelle. These large complexes have been ascribed to the oligomerization of BAX prior to its membrane insertion and pore formation. This is in contrast to the in vivo studies that suggest that active BAX inserts into the outer mitochondrial membrane as a monomer and then undergoes oligomerization. Here, to simultaneously determine the molecular weight and the number of BAX proteins per BAX-detergent micelle during detergent activation, we have used an approach that combines two single-molecule sensitivity technique, fluorescence correlation spectroscopy, and fluorescence-intensity distribution analysis. We have tested a range of detergents as follows: n-octyl glucoside, dodecyl maltoside, Triton X-100, Tween 20, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and cholic acid. With these detergents we observe that BAX is a monomer before, during, and after interaction with micelles. We conclude that detergent activation of BAX is not congruent with oligomerization and that in physiologic buffer conditions BAX can assume two stable monomeric conformations, one inactive and one active.BAX2 is a pro-apoptotic member of the BCL-2 protein family. In a simplified apoptosis model, monomeric inactive BAX is localized in the cytoplasm of healthy nondying cells (1). During apoptosis BAX is activated and translocates to the outer mitochondrial membrane (2) where it inserts as a monomer (3), undergoes oligomerization (4), and forms a pore through which cytochrome c and other apoptotic factors are released into the cytoplasm. Once in the cytoplasm, these apoptotic factors induce the activation of the effector caspases that execute the cell death process. This mechanism, which is generally correct, requires that soluble BAX becomes integrated into the mitochondrial membrane where it forms a functional oligomeric pore capable of cytochrome c release. However, the molecular mechanism of BAX activation remains controversial (5, 6).It has been understood for some time, but frequently ignored, that activity of the BCL-2 family proteins is exhibited in cells when these proteins are associated with the hydrophobic environment of membranes. Therefore, it has always seemed that attention to the effect of hydrophobic environments on the BCL-2 family proteins would be rewarding. It has been shown that BAX can be directly activated by treatment with nonionic detergents such as n-octyl glucoside, dodecyl maltoside, and Triton X-100 (1, 7). During activation by nonionic detergents, to gain the ability to form pores in a bilayer membrane, BAX needs to undergo a major conformational transition from a globular protein with two pore-forming α-helices 5 and 6 hidden in the protein core (8) to a conformation in which these two helices are exposed and inserted into a lipid membrane (3, 5, 9). The nature of this active conformation of BAX is important for the understanding of the death decision in cells. Most proposals suggest that in a cell this activated form of BAX protein is initiated and maintained by the interactions with other proteins, such as tBID, or by BAX itself as a homo-oligomer (7, 10).Nonionic detergents have been commonly used to activate BAX for in vitro studies because they are reliably effective and simple to employ. However, little is known about the detailed molecular mechanism of BAX activation by these detergents and its comparability with in vivo activation of BAX. What is known is that concentrations of detergent above their critical micelle concentration (CMC) are necessary for BAX activation. This suggests that, to be activated, BAX needs to interact with detergent micelles instead of monomeric detergent molecules. For example, in the case of BAX activation by n-octyl glucoside, it has been shown that n-octyl glucoside concentration should be 1% (w/v) (7), which is well above the CMC for this detergent (0.6% w/v) (11). In addition, it has also been shown that above their individual CMC concentrations most BAX-activating detergents produce a change in BAX conformation that can be detected by a conformation-sensitive 6A7 antibody against BAX (1, 12, 13). In cellular experiments this feature of BAX reactivity to 6A7 antibody is commonly associated with the onset of apoptosis (14, 15). However, CHAPS does not generate the antibody-detected conformational change or the activation of BAX. The small micelle size of this detergent (10 kDa) suggests that perhaps BAX cannot adopt an activated state with this detergent. However, cholic acid with even smaller micelle size (4 kDa) can partially activate BAX (1).Many important detergent properties are associated with micelles. The formation of detergent micelles in solution is concentration-dependent beginning at the CMC. The CMC value for a detergent has practical importance because in most cases only monomers of detergent can be removed by dialysis, and therefore, it is easier to remove detergent monomers for a detergent with high CMC value than for a detergent with low CMC (11). For BAX this same consideration applies to its activation with n-octyl glucoside (CMC ∼23 mm) as compared with its activation with Triton X-100 (CMC ∼0.25 mm). The ease of dialysis is why, in most cases, OG is used to activate BAX in vitro.It has been shown by analytical gel filtration that, when incubated with n-octyl glucoside, BAX creates complexes with molecular weight larger than the combined size of a BAX monomer (21 kDa) and an n-octyl glucoside micelle (∼26 kDa) (7, 11). It has also been shown that in defined liposomes BAX pore formation requires oligomerization (16). These data combined with the knowledge that oligomerization is important for the biological function of BAX led to a hypothesis that BAX oligomerizes during its detergent activation prior to membrane insertion (7). However, it has been shown that in vivo activated BAX inserts into the outer mitochondrial membrane as a monomer (3), and to create a pore, BAX undergoes oligomerization in this membrane (4). This discrepancy between the oligomeric state of active BAX prior to its insertion into a lipid membrane in vivo (monomer) and in vitro (possibly hexamer or octamer) led us to study the oligomerization state of BAX in detergent micelles. The important issue is whether BAX activation requires protein oligomerization or whether active BAX conformation can be generated from a single protein monomer. To solve this issue we used two single-molecule sensitivity techniques: fluorescence correlation spectroscopy (FCS) (17) and fluorescence-intensity distribution analysis (FIDA) (18). Combined use of FCS and FIDA allows simultaneous determination of the apparent molecular weight and the number of fluorescently labeled BAX monomers per protein-detergent micelle. Our results are consistent with previously established results in which BAX forms high molecular weight protein-detergent micelles with n-octyl glucoside (4) and show that BAX is present as a monomer in these complexes. In addition, we determined the apparent molecular weight and the number of BAX proteins bound per protein-detergent micelles formed by BAX and micelles of five additional detergents (dodecyl maltoside, Triton X-100, Tween 20, cholic acid, and CHAPS). Our data show that BAX is a monomer before, during, and after interaction with the micelles of all tested detergents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号