首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.  相似文献   

2.
3.

Background  

The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease.  相似文献   

4.
Soluble CD14 (sCD14) and IL-18 are markers and mediators of the innate immune response, and their plasma levels candidate biomarkers of HCV treatment effects and outcome. Here, we retrospectively studied sCD14 and IL-18 over the course of interferon-based treatment of HCV genotype 1 infection, with the aim to investigate the impact of direct-acting antivirals (DAAs) on the dynamics and relationships between these biomarkers and treatment effects and outcome. Two cohorts were followed longitudinally; one treated with standard dual therapy of pegylated IFNα and ribavirin, and one cohort receiving triple therapy including Telaprevir. sCD14 and IL-18 were measured before and during treatment and analyzed in relation to treatment effects. The initial analysis confirmed two patterns previously observed in patients with HCV/HIV-1 co-infection: Baseline levels of sCD14 were significantly lower in patients that went on to clear HCV infection in response to IFNα and ribavirin, and sCD14 levels were strongly induced during the course of this treatment. Interestingly, baseline levels of sCD14 and IL-18 in combination predicted treatment outcome in dual therapy better than either marker alone. Notably, these associations were weaker with the addition of Telaprevir to the treatment regimen, suggesting that the relationships between innate immune activation and outcome were altered and diminished by inclusion of a DAA in the treatment. In triple therapy, the dynamic increase of sCD14 in response to treatment was higher in patients clearing the virus, suggesting that the innate response to interferon is still significantly associated with outcome in patients treated with DAA-containing regimens. These results support the notion that levels of innate immune activation before and during treatment are associated with interferon-based treatment outcome. Furthermore, the addition of Telaprevir significantly alters the dynamics and relationships between innate immune biomarkers and treatment effects and outcome.  相似文献   

5.
Target site insensitivity resulting from point mutations within the voltage-gated sodium channel of the insect nervous system is known to be of primary importance in the development of resistance to pyrethroid insecticides. This study shifts current research paradigms by conducting, for the first time, a global analysis of all the naturally occurring mutations, both nonsynonymous and synonymous mutations, as well as mutation combinations in the entire mosquito sodium channel of Culex quinquefasciatus and analyzing their evolutionary and heritable feature and roles in insecticide resistance. Through a systematic analysis of comparing nucleotide polymorphisms in the entire sodium channel cDNAs of individuals between susceptible and resistant mosquito strains, between field parental mosquitoes and their permethrin selected offspring, and among different mosquito groups categorized by their levels of tolerance to specific permethrin concentrations within and among the mosquito strains of the field parental strains and their permethrin selected offspring, 3 nonsynonymous (A109S, L982F, and W1573R) and 6 synonymous (L852, G891, A1241, D1245, P1249, and G1733) mutations were identified. The co-existence of all 9 mutations, both nonsynonymous and synonymous, and their homozygousity were found to be important factors for high levels of resistance. Our study, for the first time, provide a strong case demonstrating the co-existence of both nonsynonymous and synonymous mutations in the sodium channel of resistant mosquitoes in response to insecticide resistance and the inheritance of these mutations in the offspring of field mosquito strains following insecticide selection.  相似文献   

6.
In many organisms, synonymous codon usage is biased by a history of natural selection. However, codon bias, itself, does not indicate that selection is ongoing; it may be a vestige of past selection. Simple statistical tests have been devised to infer ongoing selection on codon usage by comparing the derived state frequency spectra at polymorphic sites segregating either derived preferred codons or derived unpreferred codons; if selection is effective, the frequency of derived states should be higher in the former. We propose a new test that uses the inferred degree of preference, essentially calculating the correlation of derived state frequency and the difference in preference between the derived and the ancestral states; the correlation should be positive if selection is effective. When implementing the test, derived and ancestral states can be assigned by parsimony or on the basis of relative probability. In either case, statistical significance is estimated by a simple permutation test. We explored the statistical power of the test by sampling polymorphism data from 14 loci in 16 strains of D. simulans, finding that the test retains 80% power even when quite a few of the data are discarded. The power of the test likely reflects better use of multiple features of the data, combining population frequencies of polymorphic variants and quantitative estimates of codon preferences. We also applied this novel test to 14 newly sequenced loci in five strains of D. mauritiana, showing for the first time ongoing selection on codon usage in this species.  相似文献   

7.
The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1− cells) was undetectable. HAV-infected cr5 and mut2 cells but not mut1, mut3, d1−, and DR2 cells developed the characteristic cytoplasmic granular fluorescence of HAV-infected cells. These results indicate that the Cys-rich region of havcr-1 and its first N-glycosylation site are required for binding of protective MAb 190/4 and HAV receptor function.

Viral hepatitis is a major public health problem, with estimated annual medical costs of billions of dollars. The Center for Disease Control and Prevention estimated that in the United States alone, hepatitis A virus (HAV), the causative agent of acute hepatitis in humans, produces substantial morbidity and mortality, with an estimated 125,000 to 200,000 infections occurring each year and approximately 100 deaths from fulminant hepatitis. HAV is the only member of the hepatovirus genus of the Picornaviridae, a family of small, nonenveloped, positive-strand RNA viruses that include human pathogens such as poliovirus (PV) and rhinovirus as well as animal pathogens such as foot-and-mouth disease virus and encephalomyocarditis virus. Hepatitis A is transmitted via the oral-fecal route and can be prevented by vaccination with cell culture-adapted formalin-inactivated HAV (6, 22). The HAV RNA genome of about 7,500 nucleotides (nt) is covalently linked to the small virus-encoded VPg protein at its 5′ end (21) and has a poly(A) tail at its 3′ end. The approximately 750-nt long 5′ nontranslated region of the HAV genome codes for a long and complex internal ribosome entry site which directs the cap-independent translation of the viral message (reference ;9; and references therein). The HAV mRNA contains a single long open reading frame, which is translated into a polyprotein from which the structural proteins VP0, VP3, and VP1 and nonstructural proteins are cleaved by 3Cpro, the only HAV-encoded protease (8, 17). Sixty copies of VP0, VP3, and VP1 assemble into viral capsids, which, in association with the HAV genome, form provirions that undergo a slow RNA-dependent maturation cleavage of VP0 into VP4 and VP2 (2). VP4 of HAV is a very small protein of 21 to 23 amino acids which, in contrast to VP4s of all other picornaviruses, has not yet been found in the viral capsid (5, 12, 19).Although there have been major advances in our knowledge about human hepatitis viruses, very little is known about the mechanisms of their cell entry. Cellular receptors for human hepatitis viruses have been difficult to characterize due to poor in vitro viral growth, association of virions with serum and cell-derived materials which mask genuine virus-receptor interactions leading to cell entry, and attachment of virions to susceptible and nonsusceptible cells. We identified havcr-1 as an African green monkey kidney (AGMK) cellular receptor for HAV using protective monoclonal antibody (MAb) 190/4 as a probe (10). Ashida and Hamada recently identified a protein very similar to havcr-1 in S.la/Ve-1 cells, hybrid cells between marmoset liver and Vero cells, as an HAV receptor using the independently derived protective MAb 2H4 to screen a cDNA library (1). Nucleotide sequence analysis revealed that the HAVcr-1 cDNA codes for a novel mucin-like class I integral membrane glycoprotein, termed havcr-1, whose extracellular domain contains four putative N-glycosylation sites and two distinctive regions: an N-terminal Cys-rich region that displays homology to sequences of members of the immunoglobulin superfamily, and a mucin-like C-terminal region containing 27 repeats of the consensus PTTTTL. Our knowledge about the interaction of HAV with havcr-1 is currently limited, and the natural function(s) and ligand(s) of this receptor are unknown. In this work we characterize different species of havcr-1 migrating between 59 and 65 kDa as N-glycosylated forms of a 56-kDa band present after removal of N-glycans with peptide-N-glycosidase F (PNGase F). We also determined, using N-glycosylation and deletion mutants, that the havcr-1 Cys-rich region and its first N-glycosylation site are required for HAV receptor function. Further characterization of havcr-1 and the HAV–havcr-1 interaction will help us to understand the mechanism of cell entry of HAV and possibly to develop drugs which can prevent such interaction.  相似文献   

8.
9.
Functionally relevant hepadnavirus-cell surface interactions were investigated with the duck hepatitis B virus (DHBV) animal model by using an in vitro infection competition assay. Recombinant DHBV pre-S polypeptides, produced in Escherichia coli, were shown to inhibit DHBV infection in a dose-dependent manner, indicating that monomeric pre-S chains were capable of interfering with virus-receptor interaction. Particle-associated pre-S was, however, 30-fold more active, suggesting that cooperative interactions enhance particle binding. An 85-amino-acid pre-S sequence, spanning about half of the DHBV pre-S chain, was characterized by deletion analysis as essential for maximal inhibition. Pre-S polypeptides from heron hepatitis B virus (HHBV) competed DHBV infection equally well despite a 50% difference in amino acid sequence and a much-reduced infectivity of HHBV for duck hepatocytes. These observations are taken to indicate (i) that the functionality of the DHBV pre-S subdomain, which interacts with the cellular receptor, is determined predominantly by a defined three-dimensional structure rather than by primary sequence elements; (ii) that cellular uptake of hepadnaviruses is a multistep process involving more than a single cellular receptor component; and (iii) that gp180, a cellular receptor candidate unable to discriminate between DHBV and HHBV, is a common component of the cellular receptor complex for avian hepadnaviruses.  相似文献   

10.
The regulatory mechanisms of determining which genes specifically expressed in which tissues are still not fully elucidated, especially in plants. Using internal correspondence analysis, I first establish that tissue-specific genes exhibit significantly different synonymous codon usage in rice, although this effect is weak. The variability of synonymous codon usage between tissues accounts for 5.62% of the total codon usage variability, which has mainly arisen from the neutral evolutionary forces, such as GC content variation among tissues. Moreover, tissue-specific genes are under differential selective constraints, inferring that natural selection also contributes to the codon usage divergence between tissues. These findings may add further evidence in understanding the differentiation and regulation of tissue-specific gene products in plants.  相似文献   

11.
Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff.  相似文献   

12.
13.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

14.
Previously, we reported that three double-stranded RNA (dsRNA) segments, designated L-, M-, and S-dsRNAs, were detected in Sclerotinia sclerotiorum strain Ep-1PN. Of these, the M-dsRNA segment was derived from the genomic RNA of a potexvirus-like positive-strand RNA virus, Sclerotinia sclerotiorum debilitation-associated RNA virus. Here, we present the complete nucleotide sequence of the L-dsRNA, which is 6,043 nucleotides in length, excluding the poly(A) tail. Sequence analysis revealed the presence of a single open reading frame (nucleotide positions 42 to 5936) that encodes a protein with significant similarity to the replicases of the “alphavirus-like” supergroup of positive-strand RNA viruses. A sequence comparison of the L-dsRNA-encoded putative replicase protein containing conserved methyltransferase, helicase, and RNA-dependent RNA polymerase motifs showed that it has significant sequence similarity to the replicase of Hepatitis E virus, a virus infecting humans. Furthermore, we present convincing evidence that the virus-like L-dsRNA could replicate independently with only a slight impact on growth and virulence of its host. Our results suggest that the L-dsRNA from strain Ep-1PN is derived from the genomic RNA of a positive-strand RNA virus, which we named Sclerotinia sclerotiorum RNA virus L (SsRV-L). As far as we know, this is the first report of a positive-strand RNA mycovirus that is related to a human virus. Phylogenetic and sequence analyses of the conserved motifs of the RNA replicase of SsRV-L showed that it clustered with the rubi-like viruses and that it is related to the plant clostero-, beny- and tobamoviruses and to the insect omegatetraviruses. Considering the fact that these related alphavirus-like positive-strand RNA viruses infect a wide variety of organisms, these findings suggest that the ancestral positive-strand RNA viruses might be of ancient origin and/or they might have radiated horizontally among vertebrates, insects, plants, and fungi.  相似文献   

15.
Hepatitis A virus (HAV) and hepatitis E virus (HEV) infection in developing countries are associated with contaminated food or water. Although Thailand is non-endemic for HEV, sporadic infections may occur from zoonotic transmission. Individuals between 7 months to 69 years (mean age = 32.8) from predominantly Islamic Narathiwat (n = 305) and swine farm-dense Lop Buri (n = 416) provinces were screened for anti-HEV and anti-HAV antibodies by commercial enzyme-linked immunosorbent assay and automated chemiluminescent microparticle immunoassay, respectively. Seroprevalence and relative antibody titers were analyzed according to age groups. HAV IgG antibody positive rates in Lop Buri and Narathiwat residents were 39.9% and 58%, respectively (p < 0.001). Greater than 90% of individuals >50 years old in both provinces possessed anti-HAV IgG. In contrast, seroprevalence for anti-HEV IgG was much higher in Lop Buri (37.3%) than in Narathiwat (8.9%) (p < 0.001). Highest anti-HEV IgG prevalence was found among 21-30 year-olds (50%) in Lop Buri and 41-50 year-olds (14.1%) in Narathiwat. In summary, fewer individuals possessed anti-HEV IgG in Narathiwat where most residents abstained from pork and fewer swine farms are present. Therefore, an increased anti-HEV IgG seroprevalence was associated with the density of swine farm and possibly pork consumption. Adults were more likely than children to have antibodies to both HEV and HAV.  相似文献   

16.
17.
Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H functional states.  相似文献   

18.

Background and Aims

The virus/host interplay mediates liver pathology in chronic HBV infection. MiRNAs play a pivotal role in virus/host interactions and are detected in both serum and HBsAg-particles, but studies of their dynamics during chronic infection and antiviral therapy are missing. We studied serum miRNAs during different phases of chronic HBV infection and antiviral treatment.

Methods

MiRNAs were profiled by miRCURY-LNA-Universal-RT-miRNA-PCR (Exiqon-A/S) and qPCR-panels-I/II-739-miRNA-assays and single-RT-q-PCRs. Two cohorts of well-characterized HBsAg-carriers were studied (median follow-up 34–52 months): a) training-panel (141 sera) and HBsAg-particles (32 samples) from 61 HBsAg-carriers and b) validation-panel (136 sera) from 84 carriers.

Results

Thirty-one miRNAs were differentially expressed in inactive-carriers (IC) and chronic-hepatitis-B (CHB) with the largest difference for miR-122-5p, miR-99a-5p and miR-192-5p (liver-specific-miRNAs), over-expressed in both sera and HBsAg-particles of CHB (ANOVA/U-test p-values: <0.000001/0.000001; <0.000001/0.000003; <0.000001/0.000005, respectively) and significantly down-regulated during- and after-treatment in sustained-virological-responders (SVR). MiRNA-profiles of IC and SVR clustered in the heatmap. Liver-miRNAs were combined with miR-335, miR-126 and miR-320a (internal controls) to build a MiR-B-Index with 100% sensitivity, 83.3% and 92.5% specificity (−1.7 cut-off) in both training and validation cohorts to identify IC. MiR-B-Index (−5.72, −20.43/14.38) correlated with ALT (49, 10/2056 U/l, ρ = −0.497, p<0.001), HBV-DNA (4.58, undetectable/>8.3 Log10 IU/mL, ρ = −0.732, p<0.001) and HBsAg (3.40, 0.11/5.49 Log10 IU/mL, ρ = −0.883, p<0.001). At multivariate analysis HBV-DNA (p = 0.002), HBsAg (p<0.001) and infection-phase (p<0.001), but not ALT (p = 0.360) correlated with MiR-B-Index. In SVR to Peg-IFN/NUCs MiR-B-Index improved during-therapy and post-treatment reaching IC-like values (5.32, −1.65/10.91 vs 6.68, 0.54/9.53, p = 0.324) beckoning sustained HBV-immune-control earlier than HBsAg-decline.

Conclusions

Serum miRNA profile change dynamically during the different phases of chronic HBV infection. We identified a miRNA signature associated with both natural-occurring and therapy-induced immune control of HBV infection. The MiR-B-Index might be a useful biomarker for the early identification of the sustained switch from CHB to inactive HBV-infection in patients treated with antivirals.  相似文献   

19.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of the replication complex associated with various cellular proteins. It has been reported that G protein pathway suppressor 2 (GPS2) is a potential NS5A-binding factor, as identified in a yeast two-hybrid screens of human cDNA library using viral proteins as baits [1]. In this study, we demonstrated the interaction between GPS2 and NS5A in mammalian cells by coimmunoprecipitation analysis and found that both exogenously and endogenously expressed GPS2 interacted with NS5A of genotype 1b and 2a. Mutagenesis study demonstrated that Domain I of NS5A and coiled-coil domain of GPS2 are responsible for the interaction. Knockdown of GPS2 in hepatoma cell lines suppressed the replication of HCV RNA, which can be rescued by the expression of an RNAi-resistant GPS2. Furthermore, overexpression of GPS2 enhanced the association of NS5A with a proviral cellular factor, human vesicle-associated membrane protein-associated protein A (VAP-A), while knockdown of GPS2 disrupted interaction between VAP-A and NS5A. Taken together, our results suggest that GPS2 acts as a bridge between NS5A and VAP-A and is required for efficient HCV replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号