首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thymus is the major site of T lymphocyte generation and so is critical for a functional adaptive immune system. Since, thymectomy is a component of neonatal surgery for congenital heart diseases, it provides great potential for collection and storage of thymic tissue for autologous transplantation. However, specific investigation into the optimum parameters for thymic tissue cryopreservation have not been conducted. In this research, we evaluated the effect of different cryoprotective media compositions, which included penetrating (Me2SO, glycerol) and non-penetrating (dextran-40, sucrose, hydroxyethyl starch) components, on the viability and functionality of frozen-thawed human thymic samples to select an optimal cryoprotective medium suitable for long-term storage of thymic tissue and a stromal-epithelial enriched population. Our primary focus was on receiving, low-temperature storage, culturing and evaluation of thymic tissue samples from newborns and infants with congenital heart diseases, who had undergone thymectomy as a part of standard surgical procedure. Thus, this work builds the platform for autologous clinical intervention into the thymus-deficient patients with congenital heart diseases. From our data, we conclude that although there were no significant differences in efficiency of tested cryoprotective media compositions, the combination of Me2SO and dextran-40 compounds was the most suitable for long-term storage both thymic cell suspensions and thymic fragments based on the viability of CD326+ epithelial cells and stromal-epithelial cell monolayer formation.  相似文献   

2.
Human mesenchymal stem cells (hMSCs) have great potential for clinical therapy and regenerative medicine. One major challenge concerning their application is the development of an efficient cryopreservation protocol since current methods result in a poor viability and high differentiation rates. A high survival rate of cryopreserved cells requires an optimal cooling rate and the presence of cryoprotective agents (CPA) in sufficient concentrations. The most widely used CPA, dimethylsulfoxide (Me2SO), is toxic at high concentrations at temperatures >4 °C and has harmful effects on the biological functionality of stem cell as well as on treated patients.Thus, this study investigates different combinations of non-cytotoxic biocompatible substances, such as ectoin and proline, as potential CPAs in a systematic parametric optimization study in comparison to Me2SO as control and a commercial freezing medium (Biofreeze®, Biochrom). Using a freezing medium containing a low proline (1%, w/v) and higher ectoin (10%, w/v) amount revealed promising results although the highest survival rate was achieved with the Biofreeze® medium. Cryomicroscopic experiments of hMSCs revealed nucleation temperatures ranging from −16 to −25 °C. The CPAs, beside Me2SO, did not affect the nucleation temperature. In most cases, cryomicroscopy revealed intracellular ice formation (IIF) during the cryopreservation cycle for all cryoprotocols. The occurence of IIF during thawing increased with the cooling rate. In case of hMSC there was no correlation between the rate of IIF and the post-thaw cell survival. After thawing adipogenic differentiation of the stem cells demonstrated cell functionality.  相似文献   

3.
The development of cryopreservation methods for embryonic cells and larvae of sea animals offers a great potential for marine biotechnology. Larval cells of bivalves and sea urchins were frozen to −196 °C using traditional cryoprotectants (Me2SO and trehalose) and the cryoprotective mixture developed by us. In addition to Me2SO and trehalose, this mixture contained an exogenous lipid extract from mussel tissues and antioxidants. A positive effect of antioxidants (α-tocopherol acetate, ascorbic acid or echinochrome, the quinoid pigment of sea urchins) on cell viability became significant only in the presence of exogenous lipids. Antioxidants added to cryoprotective mixtures did not reveal visible cryoprotective activity when used separately. To better understand the mechanism of the protective effect of exogenous lipids on cell membranes of sea animals, a comparative analysis of the fatty acid (FA) composition of total lipids in larval cells before and after freezing was carried out using a gas–liquid chromatography. The results indicate that freezing–thawing has direct effects on the FA composition of major lipid classes in marine invertebrate cells, and these effects can vary depending on the provenance of the cells. We have found that (I) both cell viability and the FA profile of cell lipids after cryopreservation depend on the cryoprotectants used; (II) an amount of saturated, monoenic and polyenic FAs changes significantly after cryopreservation. We assume that the addition of the exogenous lipid extract in form of liposomes could promote a renewal of disturbance areas and prevent from membrane damages during freezing–thawing.  相似文献   

4.
《Cryobiology》2009,58(3):195-200
IntroductionHuman fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.MethodsHuman fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.ResultsThe addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.ConclusionThe inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

5.
Cell-based therapeutics promise to transform the treatment of a wide range of diseases including cancer, genetic and degenerative disorders, or severe injuries. Many of the commercial and clinical development of cell therapy products require cryopreservation and storage of cellular starting materials, intermediates and/or final products at cryogenic temperature. Dimethyl sulfoxide (Me2SO) has been the cryoprotectant of choice in most biobanking situations due to its exceptional performance in mitigating freezing-related damages. However, there is concern over the toxicity of Me2SO and its potential side effects after administration to patients. Therefore, there has been growing demand for robust Me2SO-free cryopreservation methods that can improve product safety and maintain potency and efficacy. This article provides an overview of the recent advances in Me2SO-free cryopreservation of cells having therapeutic potentials and discusses a number of key challenges and opportunities to motivate the continued innovation of cryopreservation for cell therapy.  相似文献   

6.
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as −26 °C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3 mg/mL in Unisol base mixed with 1 M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9 °C) when compared to single DAFPs and/or conventional 1 M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.  相似文献   

7.
《Cryobiology》2016,72(3):486-492
Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding.  相似文献   

8.
Neural stem cells (NSCs) are of great value for clinical application and scientific research. The development of efficient cryopreservation protocols could significantly facilitate the storage and transportation for clinic applications. The objective of the present study is to improve the survival rate and viability of NSCs. Neural stem cells with three states of single-cell suspension, NSC spheres with diameters of 30-50 μm and 80-100 μm, were cryopreserved by slow-freezing method with the cryoprotective agent (CPA) of dimethyl sulfoxide (Me2SO), respectively. Then the post-thawing NSCs were tested for the survival rate and the differentiation ability. As a result, NSC spheres with diameter of 80-100 μm and Me2SO concentration of 8% achieve the survival rate of 82.9%, and the NSCs still sustain the multi-differentiation potentiality. These results indicated that both the subtle interaction among NSCs and sphere diameters may affect the survival rate together.  相似文献   

9.

Introduction

Human fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.

Methods

Human fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.

Results

The addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.

Conclusion

The inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

10.
Long term maintenance of microalgal strains by serial subculturing is often expensive and time-consuming. Alternative methods, such as cryopreservation, present several benefits and thus seem more relevant. Our study aimed at comparing two cryopreservation procedures applied to the marine diatom Haslea ostrearia (Simonsen): (1) a two-step freezing method in liquid media using 5%, 10% and 20% MeOH, Me2SO or Glycerol, and (2) an immobilization-dehydration method consisting in an algal cell entrapped in 0.7 M sucrose dehydrated and air-flow desiccated calcium alginate beads before “direct” or “two-step” freezing. Our results showed that the cryopreservation of H. ostrearia was feasible. With the two-step freezing protocol only Me2SO maintained cell viability without contamination but the low percentage of viability (<10%) prevents its use. Conversely, the immobilization-dehydration methods tested in this study were effective. Average viability of 57% and 77% were obtained with the “direct” and the “two step” cooling assays respectively, ensuring preservation of the genetic traits of H. ostrearia.  相似文献   

11.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

12.
Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum.In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 μs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay).Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at −80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.  相似文献   

13.
Availability of viable frozen-thawed endometrial tissues could facilitate detailed studies into physiologic and disease processes influencing the endometrium. This study was designed to investigate the cryosurvival of equine endometrial tissue. Previous studies in the human and horse have focused on cryopreservation of dissociated endometrial cells. To our knowledge, there are no studies on cryopreservation of endometrial explants. Our objectives were to 1) determine the influence of differing concentrations of the permeating cryoprotectant dimethyl sulfoxide (Me2SO) on viability, structural integrity, and gene expression of cryopreserved equine endometrial tissues prior to and following a 5-day explant culture in vitro and 2) examine the influence of low (1000 mg/L dextrose) vs high (4500 mg/L dextrose) glucose medium during in vitro culture. Both 10% and 20% (v/v) concentrations of Me2SO maintained viability following cryopreservation and in vitro culture. In addition, gene expression remained unaltered following cryopreservation with either 10% or 20% Me2SO. However, tissue structural integrity was slightly reduced compared to the fresh control. Furthermore, there was no difference in structural integrity, cell viability, or gene expression between low and high glucose medium during in vitro culture. Although E-cadherin and Ki67 gene expression was not different among fresh, 10% Me2SO, and 20% Me2SO treatments prior to or following tissue culture, estrogen receptor-α and progesterone receptor gene expression were reduced in all groups after explant culture. This is the first report of successful cryopreservation of equine endometrial explants.  相似文献   

14.
Existing methods for the cryopreservation of granulocytes employ primarily dimethyl sulfoxide (Me2SO) rather than glycerol as the cryoprotective additive of choice. Although Me2SO has been demonstrated to be an effective cryoprotective additive for granulocyte preservation to yield viable cells (dye exclusion, phagocytosis, etc.), the inherent toxicity and clinical objections of Me2SO as a cryoprotective additive for granulocyte preservation preclude its extensive and routine use in patients. Therefore, glycerol, with its important advantage of nontoxicity, has been investigated for its potential usefulness as a cryoprotective additive for preserving human granulocytes for transfusion.Granulocyte preparations were isolated from impure leukocyte concentrates obtained from the buffy coats of human whole blood. Studies on the isolation and purification of the granulocytes involved separation by sedimentation with dextran, removal of red cells by hypotonic shock with water, resuspension with Plasmatein and further purification by centrifugation. Intact viable granulocytes were obtained with a purity in excess of 90%.Lysosomes were studied as indicators of cryoinjury in granulocytes using β-glucuronidase as the key marker enzyme. This enzyme has been characterized as a sensitive indicator of damage to lysosomes and a direct linear relationship has been established between damage to granulocytes by freezing and amount of lysosomal enzyme released. Addition or presence of the cryoprotectant, glycerol, did not appear to have any adverse effect on lysosomes of intact granulocytes.Studies on the permeation kinetics of glycerol in granulocytes indicated that the additive was freely permeable and did not cause any potentially damaging osmotic changes in cell volume. Granulocytes in various concentrations of glycerol were then frozen at slow, moderate, and rapid cooling rates. Based on the small amount of β-glucuronidase released, good preservation of granulocyte lysosomes has been obtained with a slow cooling rate of 5 °C/min and a concentration of 15% glycerol. Further studies now are necessary to define those conditions of cooling rate and glycerol concentration required to develop a simple method for optimal preservation of granulocytes based on additional functional criteria of viability.  相似文献   

15.
Cryopreservation of human tumour cells and tissue is a valuable tool for retrospective analysis and for the transport and handling of biopsy material. Tumour tissue consists of different cell types, which have different optimal freezing conditions, and extracellular matrix. A well-defined and authentic model system is required for developing new freezing protocols and media. This work describes the use of L929 and PC-3 spheroids as new model systems for freezing human tumours. Cell suspension and spheroids were frozen in different vessels (1 ml cryovials and a special, cryo-compatible 30 × 25 μl multi well plate) at slow rate (1 °C/min). Freezing media were combinations of culture or tumour transport medium (Liforlab®) with the cryoprotective agents, Me2SO, trehalose and modified starch. We also present a new method of evaluating the viability of three dimensional multicellular systems to compare thawed spheroids objectively. Best viability (70%) of L929 spheroids occurred with a combination of Liforlab® and starch hydrolysis product. The best cryopreservation results for spheroids were found with extracellular cryoprotectants, while optimum viability of single cells was achieved with Me2SO.  相似文献   

16.
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications.  相似文献   

17.
Bone marrow transplantation (BMT) is a therapeutic procedure that involves transplantation of hematopoietic stem cells (HSC). To date, there are three sources of HSC for clinical use: bone marrow; mobilized peripheral blood; and umbilical cord blood (UCB). Depending on the stem cell source or type of transplantation, these cells are cryopreserved. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO) 10% (v/v), but infusion of Me2SO-cryopreserved cells is frequently associated with serious side effects in patients. In this study, we assessed the use of trehalose and sucrose for cryopreservation of UCB cells in combination with reduced amounts of Me2SO. The post-thawed cells were counted and tested for viability with Trypan blue, the proportion of HSC was determined by flow cytometry, and the proportion of hematopoeitic progenitor cells was measured by a colony-forming unit (CFU) assay. A solution of 30 mmol/L trehalose with 2.5% Me2SO (v/v) or 60 mmol/L sucrose with 5% Me2SO (v/v) produced results similar to those for 10% (v/v) Me2SO in terms of the clonogenic potential of progenitor cells, cell viability, and numbers of CD45+/34+ cells in post-thawed cord blood cryopreserved for a minimum of 2 weeks. Thus, cord blood, as other HSC, can be cryopreserved with 1/4 the standard Me2SO concentration with the addition of disaccharides. The use of Me2SO at low concentrations in the cryopreservation solution may improve the safety of hematopoietic cell transplantation by reducing the side effects on the patient.  相似文献   

18.
Improving aspects of platelet cryopreservation would help ease logistical challenges and potentially expand the utility of frozen platelets. Current cryopreservation procedures damage platelets, which may be caused by ice recrystallization. We hypothesized that the addition of a small molecule ice recrystallization inhibitor (IRI) to platelets prior to freezing may reduce cryopreservation-induced damage and/or improve the logistics of freezing and storage. Platelets were frozen using standard conditions of 5–6% dimethyl sulfoxide (Me2SO) or with supplementation of an IRI, N-(2-fluorophenyl)-d-gluconamide (2FA), prior to storage at −80 °C. Alternatively, platelets were frozen with 5–6% Me2SO at −30 °C or with 3% Me2SO at −80 °C with or without 2FA supplementation. Supplementation of platelets with 2FA improved platelet recovery following storage under standard conditions (p = 0.0017) and with 3% Me2SO (p = 0.0461) but not at −30 °C (p = 0.0835). 2FA supplementation was protective for GPVI expression under standard conditions (p = 0.0011) and with 3% Me2SO (p = 0.0042). Markers of platelet activation, such as phosphatidylserine externalization and microparticle release, were increased following storage at −30 °C or with 3% Me2SO, and 2FA showed no protective effect. Platelet function remained similar regardless of 2FA, although functionality was reduced following storage at −30 °C or with 3% Me2SO compared to standard cryopreserved platelets. While the addition of 2FA to platelets provided a small level of protection for some quality parameters, it was unable to prevent alterations to the majority of in vitro parameters. Therefore, it is unlikely that ice recrystallization is the major cause of cryopreservation-induced damage.  相似文献   

19.
Cryoprotectants play a vital role in the cryopreservation process, protecting biological samples from freezing damage. Here, we evaluate the effects of the combination and interaction of different extenders with permeable and non-permeable cryoprotectants, on the cryopreservation of Danio rerio sperm, analyzing the effects of cryopreservation through a broad approach to variables. Two extenders were used, Hank's balanced salt solution (HBSS) and Ginsburg's solution. Eight cryoprotective solutions (CS) were used: CS1 (HBSS + Me2SO 8%), CS2 (HBSS + Methanol 8%), CS3 (HBSS + Me2SO 8% + Skim milk powder 15%), CS4 (HBSS + Methanol 8% + Skim milk powder 15%), CS5 (Ginsburg + Me2SO 8%), CS6 (Ginsburg + Methanol 8%), CS7 (Ginsburg + Me2SO 8% + Skim milk powder 15%) and CS8 (Ginsburg + Methanol 8% + Skim milk powder 15%). The samples were cryopreserved in cryovials for 20 min on dry ice, stored in liquid nitrogen, thawed at 38 °C for 10 s, and analyzed. In addition to increasing viability, we show that powdered milk also allows for better preservation of the membrane and normal cell morphology, and protects the sperm cells from DNA damage and oxidative stress caused by cryopreservation.  相似文献   

20.
《Cryobiology》2016,73(3):191-197
Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pye's freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14 days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.1 ± 0.2 °C/min and a plunge temperature of −48.2 ± 1.5 °C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.7 ± 2.7% and a viable cell yield of 28.6 ± 2.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号