首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Post-translational modification of histones and other chromosomal proteins regulates chromatin conformation and gene activity. Methylation and acetylation of lysyl residues are among the most frequently described modifications in these proteins. Whereas these modifications have been studied in detail, very little is known about a recently discovered chemical modification, the Nε-lysine formylation, in histones and other nuclear proteins. Here we mapped, for the first time, the sites of lysine formylation in histones and several other nuclear proteins. We found that core and linker histones are formylated at multiple lysyl residues located both in the tails and globular domains of histones. In core histones, formylation was found at lysyl residues known to be involved in organization of nucleosomal particles that are frequently acetylated and methylated. In linker histones and high mobility group proteins, multiple formylation sites were mapped to residues with important role in DNA binding. Nε-lysine formylation in chromosomal proteins is relatively abundant, suggesting that it may interfere with epigenetic mechanisms governing chromatin function, which could lead to deregulation of the cell and disease.  相似文献   

2.
This paper reports that the acetylation of lysine ε-NH3+ groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated α-amylase toward inactivation is attributed to the increased net negative charge of α-amylase that resulted from the acetylation of lysine ammonium groups (lysine ε-NH3+ → ε-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial α-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications.  相似文献   

3.

Background

The N-terminal protein processing mechanism (NPM) including N-terminal Met excision (NME) and N-terminal acetylation (Nα-acetylation) represents a common protein co-translational process of some eukaryotes. However, this NPM occurred in woody plants yet remains unknown.

Methodology/Principal Findings

To reveal the NPM in poplar, we investigated the Nα-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TiO2 enrichment of acetylated peptides. We identified 58 N-terminally acetylated (Nα-acetylated) proteins. Most proteins (47, >81%) are subjected to Nα-acetylation following the N-terminal removal of Met, indicating that Nα-acetylation and NME represent a common NPM of poplar proteins. Furthermore, we confirm that poplar shares the analogous NME and Nα-acetylation (NPM) to other eukaryotes according to analysis of N-terminal features of these acetylated proteins combined with genome-wide identification of the involving methionine aminopeptidases (MAPs) and N-terminal acetyltransferase (Nat) enzymes in poplar. The Nα-acetylated reactions and the involving enzymes of these poplar proteins are also identified based on those of yeast and human, as well as the subcellular location information of these poplar proteins.

Conclusions/Significance

This study represents the first extensive investigation of Nα-acetylation events in woody plants, the results of which will provide useful resources for future unraveling the regulatory mechanisms of Nα-acetylation of proteins in poplar.  相似文献   

4.
5.
Nuclear magnetic resonance (NMR) spectroscopy is a proven technique for protein structure and dynamic studies. To study proteins with NMR, stable magnetic isotopes are typically incorporated metabolically to improve the sensitivity and allow for sequential resonance assignment. Reductive 13C-methylation is an alternative labeling method for proteins that are not amenable to bacterial host over-expression, the most common method of isotope incorporation. Reductive 13C-methylation is a chemical reaction performed under mild conditions that modifies a protein''s primary amino groups (lysine ε-amino groups and the N-terminal α-amino group) to 13C-dimethylamino groups. The structure and function of most proteins are not altered by the modification, making it a viable alternative to metabolic labeling. Because reductive 13C-methylation adds sparse, isotopic labels, traditional methods of assigning the NMR signals are not applicable. An alternative assignment method using mass spectrometry (MS) to aid in the assignment of protein 13C-dimethylamine NMR signals has been developed. The method relies on partial and different amounts of 13C-labeling at each primary amino group. One limitation of the method arises when the protein''s N-terminal residue is a lysine because the α- and ε-dimethylamino groups of Lys1 cannot be individually measured with MS. To circumvent this limitation, two methods are described to identify the NMR resonance of the 13C-dimethylamines associated with both the N-terminal α-amine and the side chain ε-amine. The NMR signals of the N-terminal α-dimethylamine and the side chain ε-dimethylamine of hen egg white lysozyme, Lys1, are identified in 1H-13C heteronuclear single-quantum coherence spectra.  相似文献   

6.
The endoplasmic reticulum (ER) has two membrane-bound acetyltransferases responsible for the endoluminal Nϵ-lysine acetylation of ER-transiting and -resident proteins. Mutations that impair the ER-based acetylation machinery are associated with developmental defects and a familial form of spastic paraplegia. Deficient ER acetylation in the mouse leads to defects of the immune and nervous system. Here, we report that both ATase1 and ATase2 form homo- and heterodimers and associate with members of the oligosaccharyltransferase (OST) complex. In contrast to the OST, the ATases only modify correctly folded polypetides. Collectively, our studies suggest that one of the functions of the ATases is to work in concert with the OST and “select” correctly folded from unfolded/misfolded transiting polypeptides.  相似文献   

7.
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.  相似文献   

8.
9.
The JmjC-domain-containing 2-oxoglutarate-dependent oxygenases catalyze protein hydroxylation and Nε-methyllysine demethylation via hydroxylation. A subgroup of this family, the JmjC lysine demethylases (JmjC KDMs) are involved in histone modifications at multiple sites. There are conflicting reports as to the substrate selectivity of some JmjC oxygenases with respect to KDM activities. In this study, a panel of modified histone H3 peptides was tested for demethylation against 15 human JmjC-domain-containing proteins. The results largely confirmed known Nε-methyllysine substrates. However, the purified KDM4 catalytic domains showed greater substrate promiscuity than previously reported (i.e., KDM4A was observed to catalyze demethylation at H3K27 as well as H3K9/K36). Crystallographic analyses revealed that the Nε-methyllysine of an H3K27me3 peptide binds similarly to Nε-methyllysines of H3K9me3/H3K36me3 with KDM4A. A subgroup of JmjC proteins known to catalyze hydroxylation did not display demethylation activity. Overall, the results reveal that the catalytic domains of the KDM4 enzymes may be less selective than previously identified. They also draw a distinction between the Nε-methyllysine demethylation and hydroxylation activities within the JmjC subfamily. These results will be of use to those working on functional studies of the JmjC enzymes.  相似文献   

10.
Posttranslational modifications (PTMs) of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the ‘histone code’. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS):tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.  相似文献   

11.
Recent analysis of prokaryotic Nε‐lysine‐acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the Nε‐lysine‐acetylated proteome of gram‐positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl‐lysine‐specific antibodies followed by LC‐MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.  相似文献   

12.
Acetylation of α-tubulin at lysine 40 (K40) is a well-conserved posttranslational modification that marks long-lived microtubules but has poorly understood functional significance. Recently, αTAT1, a member of the Gcn5-related N-acetyltransferase superfamily, has been identified as an α-tubulin acetyltransferase in ciliated organisms. Here, we explored the function of αTAT1 with the aim of understanding the consequences of αTAT1-mediated microtubule acetylation. We demonstrate that α-tubulin is the major target of αTAT1 but that αTAT1 also acetylates itself in a regulatory mechanism that is required for effective modification of tubulin. We further show that in mammalian cells, αTAT1 promotes microtubule destabilization and accelerates microtubule dynamics. Intriguingly, this effect persists in an αTAT1 mutant with no acetyltransferase activity, suggesting that interaction of αTAT1 with microtubules, rather than acetylation per se, is the critical factor regulating microtubule stability. Our data demonstrate that αTAT1 has cellular functions that extend beyond its classical enzymatic activity as an α-tubulin acetyltransferase.  相似文献   

13.
The compatible solute N-acetyl-β-lysine is unique to methanogenic archaea and is produced under salt stress only. However, the molecular basis for the salt-dependent regulation of N-acetyl-β-lysine formation is unknown. Genes potentially encoding lysine-2,3-aminomutase (ablA) and β-lysine acetyltransferase (ablB), which are assumed to catalyze N-acetyl-β-lysine formation from α-lysine, were identified on the chromosomes of the methanogenic archaea Methanosarcina mazei Gö1, Methanosarcina acetivorans, Methanosarcina barkeri, Methanococcus jannaschii, and Methanococcus maripaludis. The order of the two genes was identical in the five organisms, and the deduced proteins were very similar, indicating a high degree of conservation of structure and function. Northern blot analysis revealed that the two genes are organized in an operon (termed the abl operon) in M. mazei Gö1. Expression of the abl operon was strictly salt dependent. The abl operon was deleted in the genetically tractable M. maripaludis. Δabl mutants of M. maripaludis no longer produced N-acetyl-β-lysine and were incapable of growth at high salt concentrations, indicating that the abl operon is essential for N-acetyl-β-lysine synthesis. These experiments revealed the first genes involved in the biosynthesis of compatible solutes in methanogens.

  相似文献   

14.
Protein acetylation is a widespread modification that is mediated by site-selective acetyltransferases. KATs (lysine Nϵ-acetyltransferases), modify the side chain of specific lysines on histones and other proteins, a central process in regulating gene expression. Nα-terminal acetylation occurs on the ribosome where the α amino group of nascent polypeptides is acetylated by NATs (N-terminal acetyltransferase). In yeast, three different NAT complexes were identified NatA, NatB, and NatC. NatA is composed of two main subunits, the catalytic subunit Naa10p (Ard1p) and Naa15p (Nat1p). Naa50p (Nat5) is physically associated with NatA. In man, hNaa50p was shown to have acetyltransferase activity and to be important for chromosome segregation. In this study, we used purified recombinant hNaa50p and multiple oligopeptide substrates to identify and characterize an Nα-acetyltransferase activity of hNaa50p. As the preferred substrate this activity acetylates oligopeptides with N termini Met-Leu-Xxx-Pro. Furthermore, hNaa50p autoacetylates lysines 34, 37, and 140 in vitro, modulating hNaa50p substrate specificity. In addition, histone 4 was detected as a hNaa50p KAT substrate in vitro. Our findings thus provide the first experimental evidence of an enzyme having both KAT and NAT activities.  相似文献   

15.
Optimal stress signaling by Hypoxia Inducible Factor 2 (HIF-2) during low oxygen states or hypoxia requires coupled actions of a specific coactivator/lysine acetyltransferase, Creb binding protein (CBP), and a specific deacetylase, Sirtuin 1 (SIRT1). We recently reported that acetylation of HIF-2 by CBP also requires a specific acetyl CoA generator, acetate-dependent acetyl CoA synthetase 2 (ACSS2). In this study, we demonstrate that ACSS2/HIF-2 signaling is active not only during hypoxia, but also during glucose deprivation. Acetate levels increase during stress and coincide with maximal HIF-2α acetylation and CBP/HIF-2α complex formation. Exogenous acetate induces HIF-2α acetylation, CBP/HIF-2α complex formation, and HIF-2 signaling. ACSS2 and HIF-2 are required for maximal colony formation, proliferation, migration, and invasion during stress. Acetate also stimulates flank tumor growth and metastasis in mice in an ACSS2 and HIF-2 dependent manner. Thus, ACSS2/CBP/SIRT1/HIF-2 signaling links nutrient sensing and stress signaling with cancer growth and progression in mammals.  相似文献   

16.
Streptomyces mobaraensis DSM 40847 secretes transglutaminase that cross-links proteins via γ-glutamyl-ε-lysine isopeptide bonds. Characterized substrates are inhibitory proteins acting against various serine, cysteine and metalloproteases. In the present study, the bacterial secretome was examined to uncover additional transglutaminase substrates. Fractional ethanol precipitation of the exported proteins at various times of culture growth, electrophoresis of the precipitated proteins, and sequencing of a 39 kDa protein by mass spectrometry revealed the novel beta-lactamase Sml-1. As indicated by biotinylated probes, Sml-1, produced in E. coli, exhibits glutamine and lysine residues accessible for transglutaminase. The chromogenic cephalosporin analogue, nitrocefin, was hydrolyzed by Sml-1 with low velocity. The obtained Km and kcat values of the recombinant enzyme were 94.3±1.8 μM and 0.39±0.03 s-1, respectively. Penicillin G and ampicillin proved to be weak inhibitors of nitrocefin hydrolysis (Ki of 0.1 mM and 0.18 mM). Negligible influence of metals on β-lactamase activity ruled out that Sml-1 is a Zn2+-dependent class B beta-lactamase. Rather, sequence motifs such as SITK, YSN, and HDG forming the active core in a hypothetical structure may be typical for class C beta-lactamases. Based on the results, we assume that the novel transglutaminase substrate ensures undisturbed growth of aerial hyphae in Streptomyces mobaraensis by trapping and inactivating hostile beta-lactam antibiotics.  相似文献   

17.
Proteasomes are energy-dependent proteolytic machines. We elaborate here on the previously observed Nα acetylation of the initiator methionine of the α1 protein of 20S core particles (CPs) of Haloferax volcanii proteasomes. Quantitative mass spectrometry revealed this was the dominant N-terminal form of α1 in H. volcanii cells. To further examine this, α1 proteins with substitutions in the N-terminal penultimate residue as well as deletion of the CP “gate” formed by the α1 N terminus were examined for their Nα acetylation. Both the “gate” deletion and Q2A substitution completely altered the Nα-acetylation pattern of α1, with the deletion rendering α1 unavailable for Nα acetylation and the Q2A modification apparently enhancing cleavage of α1 by methionine aminopeptidase (MAP), resulting in acetylation of the N-terminal alanine. Cells expressing these two α1 variants were less tolerant of hypoosmotic stress than the wild type and produced CPs with enhanced peptidase activity. Although α1 proteins with Q2D, Q2P, and Q2T substitutions were Nα acetylated in CPs similar to the wild type, cells expressing these variants accumulated unusually high levels of α1 as rings in Nα-acetylated, unmodified, and/or MAP-cleaved forms. More detailed examination of this group revealed that while CP peptidase activity was not impaired, cells expressing these α1 variants displayed higher growth rates and were more tolerant of hypoosmotic and high-temperature stress than the wild type. Overall, these results suggest that Nα acetylation of α1 is important in CP assembly and activity, high levels of α1 rings enhance cell proliferation and stress tolerance, and unregulated opening of the CP “gate” impairs the ability of cells to overcome salt stress.Proteolysis is important in regulation and protein quality control. Energy-dependent proteases are crucial to early stages of these proteolytic events and include proteasomes, multicatalytic proteases present in all eukaryotes and archaea and in some bacteria. The catalytic component of proteasomes, the 20S core particle (CP), consists of four heptameric rings of α- and β-type subunits stacked as a barrel in an α7β7β7α7 configuration and is essential for growth of archaeal and eukaryotic cells (39, 54). The active sites responsible for peptide bond hydrolysis are formed by N-terminal Thr residues of β-type subunits and are sequestered within the central chamber of the barrel-like structure. Energy-dependent triple-A ATPases, including regulatory particle triple-A ATPases (Rpt) in eukaryotes and proteasome-activating nucleotidases (PAN) in archaea, mediate the unfolding and translocation of substrate proteins through the α-rings for degradation within the CP (39, 40).One major difference between eukaryotic and prokaryotic proteasomal CPs is in the crystal structure of the channel opening formed by the α-rings. Due to partial disorder of the α-subunit N termini, the site of substrate entry appears open at the ends of the cylinders of archaeal and bacterial CPs (e.g., CPs of Thermoplasma acidophilum, Archaeoglobus fulgidus, and Mycobacterium tuberculosis) (13, 15, 27). In contrast, X-ray structures of the CPs of yeast (14) and bovine (45) do not contain this opening. Instead the extreme N termini of the α2, α3, and α4 subunits and the loop structure of α5 fill the central pore in a gate-like structure.Evidence suggests that all CPs are gated, and the major differences observed in the state of the α-ring gate in crystal structures are not physiological. For example, the N-terminal 11 amino acids of the A. fulgidus α subunit, which are not defined by electron density in the CP structure, are more ordered in the 16S “half” proteasome precursor (13). Furthermore, cryoelectron microscopy of the M. tuberculosis CP reveals closed ends that are dependent on the first eight residues of the α-subunit and which diminish peptidolytic activity. Consistent with this, deletion of the N-terminal α-helix (Δ2-12) of the T. acidophilum CP α-subunit abolishes the need for an ATPase (i.e., PAN) in the proteasome-mediated degradation of acid-denatured green fluorescent protein-SsrA or casein (4). In addition, the conserved YDR motif thought to be important in the sterics of α-ring gating is present in all archaeal α-type subunits to date (13). Thus, prokaryotes are thought to gate the α-ring aperture of their proteasomes; however, the physiological consequences of unregulated opening of this gate have not been examined.A gated CP channel formed by the N termini of α-rings may be a general mechanism for regulating the activity of proteasomes. The rate-limiting step in proteasome-mediated protein degradation is translocation of substrates through the α-rings to the active sites contained within the β-rings of the CP (24). Gating is supported by the finding that eukaryotic CPs have no peptidolytic activity in the absence of Rpt proteins or mild chaotropic agents such as sodium dodecyl sulfate (SDS) or heat treatment (9). Furthermore, peptidase activity of the yeast CP is blocked by the N-terminal regions of the α3 subunit. Deletion (Δ2-9) or single substitution (D9A) of N-terminal residues of α3 derepresses this peptidase activity (12).An additional gating mechanism could be employed by posttranslational modifications of the N termini of the α-type subunits. The α-type subunits of CPs are modified by Nα acetylation in several eukaryotes and haloarchaea, including Haloferax volcanii (10, 16, 20, 21, 44). In yeast, N-acetyltransferase 1 (NAT1), the catalytic component of NatA, is responsible for the Nα acetylation of five of the α-type subunits (α1, α2, α3, α4, and α7). Proteasomes purified from a nat1 mutant have twofold-higher chymotrypsin-like peptidase activity in the absence of SDS compared to the wild type, suggesting that Nα acetylation enhances closure of the α-gate (21). In H. volcanii, both α1 and α2 are Nα acetylated on their initiator methionine residue with a subset of α1 not acetylated and instead cleaved by an apparent methionine aminopeptidase (16). A large-scale proteomic survey reveals Nα acetylation is common to other proteasomal α-type proteins of the haloarchaea (10). In this previous survey, the ratios of Nα-acetylated and cleaved forms of the α-type proteins were quantified by spectral counting and estimated to be around 3:1 and 4:3 for Halobacterium salinarum and Natronomonas pharaonis, respectively (10). So far, this existence of these two unique forms of α subunit N termini in the cell simultaneously (initiator methionine Nα acetylated and methionine aminopeptidase [MAP] cleaved) has only been observed in the haloarchaea.In the present study, quantitative tandem mass spectrometry (MS/MS) was used to precisely determine the ratio of the Nα-acetylated to MAP-cleaved forms of the proteasomal α1 protein in H. volcanii. In addition, site-directed mutagenesis was used to examine how the N-terminal penultimate (second) residue and N-terminal α-helix of α1 influence its Nα-acetylated state, CP activity, and cell physiology. Alterations that either fully abolished Nα acetylation or enhanced MAP cleavage of α1 (i) resulted in an increase in CP peptidase activity and (ii) rendered the cells more sensitive to hypoosmotic stress than wild type. In contrast, site-directed changes that generated a mixed population of α1 proteins in various Nα-acetylated states, yet similar Nα-acetylation profiles in CPs to wild type, had profound consequences, including (i) a substantial increase in the levels of α1 protein as heptameric rings, (ii) higher growth rate and cell yield, and (iii) enhanced tolerance of cells to thermal and hypoosmotic stress.  相似文献   

18.
The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.  相似文献   

19.
Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed.  相似文献   

20.
Proximal tubular epithelial cells (TECs) demand high energy and rely on mitochondrial oxidative phosphorylation as the main energy source. However, this is disturbed in renal fibrosis. Acetylation is an important post-translational modification for mitochondrial metabolism. The mitochondrial protein NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates mitochondrial metabolic function. Therefore, we aimed to identify the changes in the acetylome in tubules from fibrotic kidneys and determine their association with mitochondria. We found that decreased SIRT3 expression was accompanied by increased acetylation in mitochondria that have separated from TECs during the early phase of renal fibrosis. Sirt3 knockout mice were susceptible to hyper-acetylated mitochondrial proteins and to severe renal fibrosis. The activation of SIRT3 by honokiol ameliorated acetylation and prevented renal fibrosis. Analysis of the acetylome in separated tubules using LC–MS/MS showed that most kidney proteins were hyper-acetylated after unilateral ureteral obstruction. The increased acetylated proteins with 26.76% were mitochondrial proteins which were mapped to a broad range of mitochondrial pathways including fatty acid β-oxidation, the tricarboxylic acid cycle (TCA cycle), and oxidative phosphorylation. Pyruvate dehydrogenase E1α (PDHE1α), which is the primary link between glycolysis and the TCA cycle, was hyper-acetylated at lysine 385 in TECs after TGF-β1 stimulation and was regulated by SIRT3. Our findings showed that mitochondrial proteins involved in regulating energy metabolism were acetylated and targeted by SIRT3 in TECs. The deacetylation of PDHE1α by SIRT3 at lysine 385 plays a key role in metabolic reprogramming associated with renal fibrosis.Subject terms: Protein-protein interaction networks, End-stage renal disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号