首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

2.
There is a great need of new drugs against malaria because of the increasing spread of parasite resistance against the most commonly used drugs in the field. We found that monensin, a common veterinary antibiotic, has a strong inhibitory effect in Plasmodium berghei and Plasmodium yoelii sporozoites hepatocyte infection in vitro. Infection of host cells by another apicomplexan parasite with a similar mechanism of host cell invasion, Toxoplasma tachyzoites, was also inhibited. Treatment of mice with monensin abrogates liver infection with P. berghei sporozoites in vivo. We also found that at low concentrations monensin inhibits the infection of Plasmodium sporozoites by rendering host cells resistant to infection, rather than having a direct effect on sporozoites. Monensin effect is targeted to the initial stages of parasite invasion of the host cell with little or no effect on development, suggesting that this antibiotic affects an essential host cell component that is required for Plasmodium sporozoite invasion.  相似文献   

3.
Blood feeding is an integral process required for physiological functions and propagation of the malaria vector Anopheles. During blood feeding, presence of the malaria parasite, Plasmodium in the blood induces several host effector molecules including microRNAs which play important roles in the development and maturation of the parasite within the mosquito. The present study was undertaken to elucidate the dynamic expression of miRNAs during gonotrophic cycle and parasite development in Anopheles stephensi. Using next generation sequencing technology, we identified 126 miRNAs of which 17 were novel miRNAs. The miRNAs were further validated by northern hybridization and cloning. Blood feeding and parasitized blood feeding in the mosquitoes revealed regulation of 13 and 16 miRNAs respectively. Expression profiling of these miRNAs revealed that significant miRNAs were down-regulated upon parasitized blood feeding with a repertoire of miRNAs showing stage specific up-regulation. Expression profiles of significantly modulated miRNAs were further validated by real time PCR. Target prediction of regulated miRNAs revealed overlapping targeting by different miRNAs. These targets included several metabolic pathways including metabolic, redox homeostasis and protein processing machinery components. Our analysis revealed tight regulation of specific miRNAs post blood feeding and parasite infection in An. stephensi. Such regulated expression suggests possible role of these miRNAs during gonotrophic cycle in mosquito. Another set of miRNAs were also significantly regulated at 42 h and 5 days post infection indicating parasite stage-specific role of host miRNAs. This study will result in better understanding of the role of miRNAs during gonotrophic cycle and parasite development in mosquito and can probably facilitate in devising novel malaria control strategies at vector level.  相似文献   

4.
5.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

6.
The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13C‐labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage‐repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.  相似文献   

7.
Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms.  相似文献   

8.
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.  相似文献   

9.
Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell.  相似文献   

10.
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.  相似文献   

11.
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.  相似文献   

12.
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.  相似文献   

13.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

14.
15.
16.
The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum = 3) and 1.2 host families (maximum = 3) while lineages of Plasmodium were recovered from an average of 2.5 species (maximum = 27) and 1.6 families (maximum = 9). Averaged within genera, lineages of both Plasmodium and Haemoproteus were constrained in their host distribution relative to random expectations. However, while several individual lineages within both genera exhibited significant host constraint, host breadth varied widely among related lineages, particularly within the genus Plasmodium. Several lineages of Plasmodium exhibited extreme generalist host-parasitism strategies while other lineages appeared to have been constrained to certain host families over recent evolutionary history. Sequence data from two nuclear genes recovered from a limited sample of Plasmodium parasites indicated that, at the resolution of this study, inferences regarding host breadth were unlikely to be grossly affected by the use of parasite mitochondrial lineages as a proxy for biological species. The use of divergent host-parasitism strategies among closely related parasite lineages suggests that host range is a relatively labile character. Since host specificity may also influence parasite virulence, these results argue for considering the impact of haematozoa on avian hosts on a lineage-specific basis.  相似文献   

17.
Actin is one of the most conserved and ubiquitous proteins in eukaryotes. Its sequence has been highly conserved for its monomers to self-assemble into filaments that mediate essential cell functions such as trafficking, cell shape and motility. The malaria-causing parasite, Plasmodium, expresses a highly sequence divergent actin that is critical for its rapid motility at different stages within its mammalian and mosquito hosts. Each of Plasmodium actin’s four subdomains have divergent regions compared to canonical vertebrate actins. We previously identified subdomains 2 and 3 as providing critical contributions for parasite actin function as these regions could not be replaced by subdomains of vertebrate actins. Here we probed the contributions of individual divergent amino acid residues in these subdomains on parasite motility and progression. Non-lethal changes in these subdomains did not affect parasite development in the mammalian host but strongly affected progression through the mosquito with striking differences in transmission to and through the insect. Live visualization of actin filaments showed that divergent amino acid residues in subdomains 2 and 4 enhanced localization associated with filaments, while those in subdomain 3 negatively affected actin filaments. This suggests that finely tuned actin dynamics are essential for efficient organ entry in the mosquito vector affecting malaria transmission. This work provides residue level insight on the fundamental requirements of actin in highly motile cells.  相似文献   

18.
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.  相似文献   

19.
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.  相似文献   

20.
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号