首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthomonas citri pv. citri strain 306 (Xcc306), a causative agent of citrus canker, produces endoxylanases that catalyze the depolymerization of cell wall-associated xylans. In the sequenced genomes of all plant-pathogenic xanthomonads, genes encoding xylanolytic enzymes are clustered in three adjacent operons. In Xcc306, these consecutive operons contain genes encoding the glycoside hydrolase family 10 (GH10) endoxylanases Xyn10A and Xyn10C, the agu67 gene, encoding a GH67 α-glucuronidase (Agu67), the xyn43E gene, encoding a putative GH43 α-l-arabinofuranosidase, and the xyn43F gene, encoding a putative β-xylosidase. Recombinant Xyn10A and Xyn10C convert polymeric 4-O-methylglucuronoxylan (MeGXn) to oligoxylosides methylglucuronoxylotriose (MeGX3), xylotriose (X3), and xylobiose (X2). Xcc306 completely utilizes MeGXn predigested with Xyn10A or Xyn10C but shows little utilization of MeGXn. Xcc306 with a deletion in the gene encoding α-glucuronidase (Xcc306 Δagu67) will not utilize MeGX3 for growth, demonstrating the role of Agu67 in the complete utilization of GH10-digested MeGXn. Preferential growth on oligoxylosides compared to growth on polymeric MeGXn indicates that GH10 xylanases, either secreted by Xcc306 in planta or produced by the plant host, generate oligoxylosides that are processed by Xyn10 xylanases and Agu67 residing in the periplasm. Coordinate induction by oligoxylosides of xyn10, agu67, cirA, the tonB receptor, and other genes within these three operons indicates that they constitute a regulon that is responsive to the oligoxylosides generated by the action of Xcc306 GH10 xylanases on MeGXn. The combined expression of genes in this regulon may allow scavenging of oligoxylosides derived from cell wall deconstruction, thereby contributing to the tissue colonization and/or survival of Xcc306 and, ultimately, to plant disease.  相似文献   

2.
Endo-β1,4-xylanases (xylanases) hydrolyse the β1,4 glycosidic bonds in the backbone of xylan. Although xylanases from glycoside hydrolase family 11 (GH11) have been extensively studied, several issues remain unresolved. Thus, the mechanism by which these enzymes hydrolyse decorated xylans is unclear and the structural basis for the variation in catalytic activity within this family is unknown. Furthermore, the mechanism for the differences in the inhibition of fungal GH11 enzymes by the wheat protein XIP-I remains opaque. To address these issues we report the crystal structure and biochemical properties of the Neocallimastix patriciarum xylanase NpXyn11A, which displays unusually high catalytic activity and is one of the few fungal GH11 proteins not inhibited by XIP-I. Although the structure of NpXyn11A could not be determined in complex with substrates, we have been able to investigate how GH11 enzymes hydrolyse decorated substrates by solving the crystal structure of a second GH11 xylanase, EnXyn11A (encoded by an environmental DNA sample), bound to ferulic acid-1,5-arabinofuranose-α1,3-xylotriose (FAX3). The crystal structure of the EnXyn11A-FAX3 complex shows that solvent exposure of the backbone xylose O2 and O3 groups at subsites −3 and +2 allow accommodation of α1,2-linked 4-methyl-D-glucuronic acid and L-arabinofuranose side chains. Furthermore, the ferulated arabinofuranose side chain makes hydrogen bonds and hydrophobic interactions at the +2 subsite, indicating that the decoration may represent a specificity determinant at this aglycone subsite. The structure of NpXyn11A reveals potential −3 and +3 subsites that are kinetically significant. The extended substrate-binding cleft of NpXyn11A, compared to other GH11 xylanases, may explain why the Neocallimastix enzyme displays unusually high catalytic activity. Finally, the crystal structure of NpXyn11A shows that the resistance of the enzyme to XIP-I is not due solely to insertions in the loop connecting β strands 11 and 12, as suggested previously, but is highly complex.  相似文献   

3.

Paenibacillus sp. JDR-2 (Pjdr2) has been studied as a model for development of bacterial biocatalysts for efficient processing of xylans, methylglucuronoxylan, and methylglucuronoarabinoxylan, the predominant hemicellulosic polysaccharides found in dicots and monocots, respectively. Pjdr2 produces a cell-associated GH10 endoxylanase (Xyn10A1) that catalyzes depolymerization of xylans to xylobiose, xylotriose, and methylglucuronoxylotriose with methylglucuronate-linked α-1,2 to the nonreducing terminal xylose. A GH10/GH67 xylan utilization regulon includes genes encoding an extracellular cell-associated Xyn10A1 endoxylanase and an intracellular GH67 α-glucuronidase active on methylglucuronoxylotriose generated by Xyn10A1 but without activity on methylglucuronoxylotetraose generated by a GH11 endoxylanase. The sequenced genome of Pjdr2 contains three paralogous genes potentially encoding GH115 α-glucuronidases found in certain bacteria and fungi. One of these, Pjdr2_5977, shows enhanced expression during growth on xylans along with Pjdr2_4664 encoding a GH11 endoxylanase. Here, we show that Pjdr2_5977 encodes a GH115 α-glucuronidase, Agu115A, with maximal activity on the aldouronate methylglucuronoxylotetraose selectively generated by a GH11 endoxylanase Xyn11 encoded by Pjdr2_4664. Growth of Pjdr2 on this methylglucuronoxylotetraose supports a process for Xyn11-mediated extracellular depolymerization of methylglucuronoxylan and Agu115A-mediated intracellular deglycosylation as an alternative to the GH10/GH67 system previously defined in this bacterium. A recombinantly expressed enzyme encoded by the Pjdr2 agu115A gene catalyzes removal of 4-O-methylglucuronate residues α-1,2 linked to internal xylose residues in oligoxylosides generated by GH11 and GH30 xylanases and releases methylglucuronate from polymeric methylglucuronoxylan. The GH115 α-glucuronidase from Pjdr2 extends the discovery of this activity to members of the phylum Firmicutes and contributes to a novel system for bioprocessing hemicelluloses.

  相似文献   

4.
Paenibacillus barcinonensis is a soil bacterium bearing a complex set of enzymes for xylan degradation, including several secreted enzymes and Xyn10B, one of the few intracellular xylanases reported to date. The crystal structure of Xyn10B has been determined by x-ray analysis. The enzyme folds into the typical (β/α)8 barrel of family 10 glycosyl hydrolases (GH10), with additional secondary structure elements within the β/α motifs. One of these loops -L7- located at the β7 C terminus, was essential for xylanase activity as its partial deletion yielded an inactive enzyme. The loop contains residues His249–Glu250, which shape a pocket opened to solvent in close proximity to the +2 subsite, which has not been described in other GH10 enzymes. This wide cavity at the +2 subsite, where methyl-2,4-pentanediol from the crystallization medium was found, is a noteworthy feature of Xyn10B, as compared with the narrow crevice described for other GH10 xylanases. Docking analysis showed that this open cavity can accommodate glucuronic acid decorations of xylo-oligosaccharides. Co-crystallization experiments with conduramine derivative inhibitors supported the importance of this open cavity at the +2 subsite for Xyn10B activity. Several mutant derivatives of Xyn10B with improved thermal stability were obtained by forced evolution. Among them, mutant xylanases S15L and M93V showed increased half-life, whereas the double mutant S15L/M93V exhibited a further increase in stability, showing a 20-fold higher heat resistance than the wild type xylanase. All the mutations obtained were located on the surface of Xyn10B. Replacement of a Ser by a Leu residue in mutant xylanase S15L can increase hydrophobic packing efficiency and fill a superficial indentation of the protein, giving rise to a more compact structure of the enzyme.  相似文献   

5.

Background

In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.

Results

The xylanases from Nonomuraea flexuosa (Nf Xyn11A) and from Thermoascus aurantiacus (Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively.

Conclusions

Because of its high catalytic activity and good thermostability, T. aurantiacus xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas N. flexuosa xylanase shows more significant potential for the production of XOSs.  相似文献   

6.
Endo-1,4-β-xylanases are mostly classified into glycoside hydrolase (GH) family 10 or 11. In this study, we examined the catalytic functions of a recombinant endo-1,4-β-xylanase belonging to GH10 (Xyn10C) from a marine bacterium, Saccharophagus degradans 2-40. Optimal activity of this enzyme was evident at 30 °C and pH 7.0, but activity remained even at low temperatures, indicating its adaptation to cold. With respect to other xylanases known to be active in cold temperatures, Xyn10C is unique in that it showed maximal activity in the presence of 2 M of NaCl. The action patterns of recombinant Xyn10C on xylans from hardwood and softwood differed in part, but the enzyme hydrolyzed polysaccharidic substrates primarily to xylobiose and xylotriose through xylo-oligosaccharides, releasing a small amount of xylose. The K m and V max values on birchwood xylan were 10.4 mg mL?1 and 253 µmol mg?1 min?1, respectively. The efficient catalytic function of Xyn10C on short-length xylo-oligosaccharide chains was similar to the typical function of other known GH10 xylanases.  相似文献   

7.
Recently, the new trend in the second-generation ethanol industry is to use mild pretreatments, in order to reduce costs and to keep higher content of hemicellulose in the biomass. Nevertheless, a high enzyme dosage is still required in the conversion of (hemi)cellulose. The interaction between cellulases and xylanases seems to be an effective alternative to reduce enzyme loading in the saccharification process. At first, to evaluate the synergism of xylanases on bagasse degradation, we have produced two xylanases from glycoside hydrolase family 10 (GH10) and three xylanases from glycoside hydrolase family 11 (GH11), from two thermophilic organisms, Thermobifida fusca and Clostridium thermocellum, and one mesophilic organism, Streptomyces lividans. Peracetic acid (PAA) pretreated bagasse was used as substrate. The combination of XynZ-C (GH10, from C. thermocellum), and XlnB (GH11, from S. lividans) presented the highest degree of synergy after 6 h (3.62). However, the combination of XynZ-C and Xyn11A (GH11, from T. fusca) resulted in the highest total yield of reducing sugars. To evaluate the synergism between xylanases and cellulases, commercial cellulase preparation from Trichoderma reesei was combined with the selected xylanases, XynZ-C and Xyn11A. About 2-fold increase was observed in the concentration of reducing sugars, when both xylanases, XynZ-C and Xyn11A, were added together with T. reesei cellulases in the reaction mixture.  相似文献   

8.
9.
Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop β6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.  相似文献   

10.
Endo-1,4-β-xylanases (EC 3.2.1.8) hydrolyze the 1,4-β-D-xylosidic linkages in xylans, the most abundant hemicellulose in plant cell walls. Xylanase enzymes have numerous industrial applications, including the manufacturing of animal feed, bread, juice and wine, pulp and paper, and biofuels. In this study, two glycosyl hydrolase family 10 members designated GtXyn10A and GtXyn10B and two glycosyl hydrolase family 11 members, OpXyn11A and CcXyn11C, were functionally expressed and subjected to biochemical characterization. The K M , V max, and k cat values of the four xylanases, determined using birchwood xylan, ranged from 0.27 to 1.1 mg/mL, 130 to 980 μmol/min/mg, and 109 to 344 s?1, respectively, where OpXyn11A gave the highest and GtXyn10B the lowest values for all three parameters. Substrate specificity studies and analysis of the products released during the degradation of xylo-oligosaccharides and three types of xylan revealed significant differences in catalytic properties, particularly between OpXyn11A and the other xylanases and between the family 10 and the family 11 xylanases. Molecular modeling suggests that the unique substrate specificity of OpXyn11A can be attributed to the presence of a serine rather that an asparagine or aspartate residue at the +1 substrate binding site. Additionally, all four xylanases exhibited biochemical characteristics of interest for various commercial applications.  相似文献   

11.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

12.
《Process Biochemistry》2010,45(3):419-424
Two xylanases were purified to electrophoretic homogeneity from the thermophilic fungus Sporotrichum thermophile grown in a submerged liquid culture using wheat straw as carbon source. The enzymes, StXyn1 and StXyn2, have molecular masses of 24 kDa and 48 kDa, respectively, and are optimally active at pH 5 and at 60 °C. Both enzymes displayed remarkable stability up to 50 °C for 1 h, exhibiting a half-life of 60 min (StXyn1) and 115 min (StXyn2) at 60 °C. Biochemical characterization of the two xylanases against poly- and oligosaccharides indicated that StXyn1 and StXyn2 hydrolytic profiles match those of xylanase family 11 and family 10, respectively. LC–MS/MS analysis provided peptide mass and sequence information that assisted the identification of the corresponding xylanase genes from the S. thermophile genome and the classification of the two purified StXyn1 and StXyn2 as a family GH11 and GH10 endo-1,4-β-xylanases, respectively.  相似文献   

13.
14.
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K m and V max of 1.6 mg ml−1 and 118 μmol min−1 mg−1 on oat spelt xylan, and its optimal temperature and pH for activity were 37°C and pH 6.0, respectively. Its catalytic properties (k cat/K m = 3,300 ml mg−1 min−1) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.  相似文献   

15.
Xyn30D from the xylanolytic strain Paenibacillus barcinonensis has been identified and characterized. The enzyme shows a modular structure comprising a catalytic module family 30 (GH30) and a carbohydrate-binding module family 35 (CBM35). Like GH30 xylanases, recombinant Xyn30D efficiently hydrolyzed glucuronoxylans and methyl-glucuronic acid branched xylooligosaccharides but showed no catalytic activity on arabinose-substituted xylans. Kinetic parameters of Xyn30D were determined on beechwood xylan, showing a K(m) of 14.72 mg/ml and a k(cat) value of 1,510 min(-1). The multidomain structure of Xyn30D clearly distinguishes it from the GH30 xylanases characterized to date, which are single-domain enzymes. The modules of the enzyme were individually expressed in a recombinant host and characterized. The isolated GH30 catalytic module showed specific activity, mode of action on xylan, and kinetic parameters that were similar to those of the full-length enzyme. Computer modeling of the three-dimensional structure of Xyn30D showed that the catalytic module is comprised of a common (β/α)(8) barrel linked to a side-associated β-structure. Several derivatives of the catalytic module with decreasing deletions of this associated structure were constructed. None of them showed catalytic activity, indicating the importance of the side β-structure in the catalysis of Xyn30D. Binding properties of the isolated carbohydrate-binding module were analyzed by affinity gel electrophoresis, which showed that the CBM35 of the enzyme binds to soluble glucuronoxylans and arabinoxylans. Analysis by isothermal titration calorimetry showed that CBM35 binds to glucuronic acid and requires calcium ions for binding. Occurrence of a CBM35 in a glucuronoxylan-specific xylanase is a differential trait of the enzyme characterized.  相似文献   

16.
Recombinant xylanase preparations from Nonomuraea flexuosa (Nf Xyn, GH11) and Thermoascus aurantiacus (Ta Xyn, GH10) were evaluated for their abilities to hydrolyze hydrothermally pretreated wheat straw. The GH family 10 enzyme Ta Xyn was clearly more efficient in solubilizing xylan from pretreated wheat straw. Improvement of the hydrolysis of hydrothermally pretreated wheat straw by addition of the thermostable xylanase preparations to thermostable cellulases was evaluated. Clear synergistic enhancement of hydrolysis of cellulose was observed when cellulases were supplemented even with a low amount of pure xylanases. Xylobiose was the main hydrolysis product from xylan. It was found that the hydrolysis of cellulose increased nearly linearly with xylan removal during the enzymatic hydrolysis. The results also showed that the xylanase preparation from T. aurantiacus, belonging to GH family 10 always showed better hydrolytic capacity of solubilizing xylan and acting synergistically with thermostable cellulases in the hydrolysis of hydrothermally pretreated wheat straw.  相似文献   

17.
18.
A metagenomic library was generated using microbial DNA extracted from the rumen contents of a grass hay-fed dairy cow using a bacterial artificial chromosome-based vector system. Functional screening of the library identified a gene encoding a potent glycoside hydrolase, xyn10N18, localised within a xylanolytic gene cluster consisting of four open-reading frames (ORFs). The ORF, xyn10N18, encodes an endo-β-1,4-xylanase with a glycosyl hydrolase family 10 (GH10) catalytic domain, adopts a canonical α8/ß8-fold and possesses conserved catalytic glutamate residues typical of GH10 xylanases. Xyn10N18 exhibits optimal catalytic activity at 35 °C and pH 6.5 and was highly stable to pH changes retaining at least 85 % relative catalytic activity over a broad pH range (4.0–12.0). It retained 25 % of its relative activity at both low (4 °C) and high (55 °C) temperatures, however the stability of the enzyme rapidly decreased at temperatures of >40 °C. The specific activity of Xyn10N18 is enhanced by the divalent cations Mn2+ and Co2+ and is dramatically reduced by Hg2+ and Cu2+. Interestingly, EDTA had little effect on specific activity indicating that divalent cations do not function mechanistically. The enzyme was highly specific for xylan containing substrates and showed no catalytic activity against cellulose. Analysis of the hydrolysis products indicated that Xyn10N18 was an endoxylanase. Through a combination of structural modelling and in vitro enzyme characterisation this study provides an understanding of the mechanism and the substrate specificity of this enzyme serving as a starting point for directed evolution of Xyn10N18 and subsequent downstream use in industry.  相似文献   

19.
20.
Xylanases are the enzymes that breakdown complex plant cell wall polysaccharide xylan into xylose by hydrolysing the β-(1→4) glycosidic linkage between xylosides. They mainly belong to the families GH10 and GH11 of the glycoside hydrolase claβs of enzymes. GH10 xylanases have (α/β)8-barrel type of fold whereas GH11 xylanases have β-jelly roll type of fold. Both enzymes have several substrate binding subsites. This study analysed in detail the sequence and structural conservation of subsites residues by examining their 3D structures crystallized with homoxylan or its non-hydrolysable form as substrate. A total of 19 structures from GH10 and 6 structures from GH11 were analysed. It was found that in GH10 the subsites -3 to -1 consisted of conserved residues, whereas in GH11 subsites -1, -3 and +1 were found to be conserved. The substrate and subsite interaction analysed based on the presence of h-bonds and CH-π interactions showed that Face-to-Face or Edge-to-Face CH-π interactions are formed in the subsites of GH10, whereas such specific CH-π interactions were no at all observed in case of GH11 xylanases. The spatial conservation of subsite residues was also analysed using a distance matrix based approach. It was found that in GH10 xylanases conserved residues have conserved spatial position of those residues as opposed to GH11 enzymes where in subsites -2 and +2 conserved residues showed non-conservation in their spatial positions. The results presented in this study can be used in discovering new xylanases and in the engineering highly efficient xylanases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号