首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Lamium purpureum L. (Labiatae) seed oil contains 16% of a new acid characterized as (−)-octadeca-5,6-trans-16-trienoic acid (proposed trivial name `lamenallenic acid') (Ia). The acid was isolated as its methyl ester by countercurrent distribution by using a combination of recycle–single withdrawal techniques. Methyl lamenallenate (Ib) is strongly laevorotatory. 2. The structure was established by infrared spectroscopy, nuclear-magnetic-resonance spectroscopy, quantitative hydrogenation and oxidative cleavage data of the original acid and of hydrazine partial reduction products. 3. Other unsaturated esters identified by their cleavage products were oleate, linoleate and linolenate. 4. A very small amount (less than 1%) of methyl laballenate [(−)-methyl octadeca-5,6-dienoate] was also isolated and identified.  相似文献   

2.
Caffeic acid (CA) has demonstrated a strong intracellular antioxidant ability by scavenging ROS, contributing to the maintenance of cell membrane structural integrity and to reduce oxidative injuries in other cell components. Nevertheless, caffeic acid has limited usage, due to its hydrophilic character. In this work, the introduction of alkyl chains in the caffeic acid molecule by esterification (methyl - C1, ethyl - C2, butyl - C4, hexyl - C6, octyl - C8 and hexadecyl - C16), significantly increased its lipophilicity. All caffeates tested showed a much higher protective activity than caffeic acid against red blood cells (RBCs) AAPH-induced oxidative stress; this protection was heavily dependent on the length of the alkyl chain of the esters, and on their concentration. At 2.5 and 5 μM, the more lipophilic compounds (C8 and C16) showed a remarkable antioxidant activity, inhibiting hemolysis; probably, their better location within the membrane leads to a better antioxidative protection; however, at 50 μM, the more hydrophilic compounds (C1-C4) showed a better activity against hemolysis than the more lipophilic ones (C8-C16). At this higher concentration, the better interaction of the more lipophilic compounds with the membrane seems to cause changes in RBC membrane fluidity, disturbing membrane integrity. Our data show that the antioxidant activity of these compounds could play an important role for the protection of different tissues and organs, by protecting cell membranes from oxidative injuries.  相似文献   

3.
Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.  相似文献   

4.
Production of clavulanic acid (CA) by Streptomyces clavuligerus ATCC 27064 in shake-flask culture (28 °C, 250 rev min–1) was evaluated, with media containing different types and concentrations of edible vegetable oil. Firstly, four media based on those reported in the literature were examined. The medium containing soybean oil and starch as carbon and energy source gave the best production results. This medium, with the starch replaced by glycerol, and with various soybean oil concentrations (16, 23 and 30 g l–1) was utilized to further investigate CA production. Medium containing 23 g l–1 led to the highest CA productivity (722 mg l–1 in 120 h) and that one containing 30 g l–1 gave the highest CA titre (753 mg l–1 in 130 h). Also, substitution of corn and sunflower edible oils furnished similarly good results in terms of CA titre and productivity. It can be concluded that easily available vegetable oil is a very promising substrate for CA production, since it is converted slowly to glycerol and fatty acids, which are the main carbon and energy source for the microorganism.  相似文献   

5.
This study was aimed to evaluate antioxidative activities of the ethanol, methanol and water extracts of Pulicaria gnaphalodes in vegetable oil during the storage period. Different concentrations (0, 200, 400 and 800 ppm) of ethanol, methanol and water extracts and beta-hydroxy toluene (BHT; 100, 200 ppm) were added to soybean oil and incubated for 35 days at 65 °C. Peroxide values (PVs) and thiobarbituric acid-reactive substance (TBARS) levels were measured every week during the period of the study. Moreover, antioxidant capacities of the extracts were determined using DPPH and β-carotene–linoleic acid methods. Values were compared among groups in each incubation time points using ANOVA. Results showed that DPPH and β-carotene–linoleic acid assay findings on the P. gnaphalodes extracts were comparable to those found on BHT. Moreover, during incubation time, P. gnaphalodes extracts lowered PVs and TBARS levels when compared to the control (p < 0.001). In this respect, water extract was more potent than the ethanol and methanol extracts. It seems that water extract of P. gnaphalodes is a potent antioxidant which makes it as a potential antioxidant for oil and oily products during storage.  相似文献   

6.
Estimation of nutrition profile of edible fishes is essential and thus a bio-monitoring study was carried out to find out the nutritional composition of commonly available fishes in Agatti Island water of Lakshadweep Sea. Protein, carbohydrate, lipid, ash, vitamin, amino acid and fatty acid composition in the muscle of ten edible fish species were studied. Proximate analysis revealed that the protein, carbohydrate, lipid and ash contents were high in Thunnus albacares (13.69%), Parupeneus bifasciatus (6.12%), Hyporhamphus dussumieri (6.97%) and T. albacares (1.65%), respectively. Major amino acids were lysine, leucine and methionine, registering 2.84–4.56%, 2.67–4.18% and 2.64–3.91%, respectively. Fatty acid compositions ranged from 31.63% to 38.97% saturated (SFA), 21.99–26.30% monounsaturated (MUFAs), 30.32–35.11% polyunsaturated acids (PUFAs) and 2.86–7.79% branched fatty acids of the total fatty acids. The ω-3 and ω-6 PUFAs were ranged 13.05–21.14% and 6.88–9.82% of the total fatty acids, respectively. Hence, the fishes of Lakshadweep Sea are highly recommended for consumption, since these fishes are highly enriched with nutrition. The results can be used as a baseline data for comparing the various nutritional profiles of fishes in future.  相似文献   

7.
Polygalacturonic acid trans-eliminase of Xanthomonas campestris   总被引:1,自引:0,他引:1  
Polygalacturonic acid trans-eliminase from the culture fluid of Xanthomonas campestris was purified 66-fold by acetone precipitation, citrate extraction and chromatography on diethylaminoethyl- and carboxymethyl-cellulose. The optimum pH is 9·5 in glycine–sodium hydroxide buffer. Up to 1mm-calcium chloride brings about a remarkable stimulation of the enzyme activity and, at this concentration, no other cations promote or inhibit enzyme action except Ba2+ ions, which cause complete inhibition. The enzyme degrades polygalacturonic acid in a random manner; it does not act upon polygalacturonate methyl glycoside, although it can cleave partially (68%) esterified pectin. The end products from polygalacturonic acid at 46% breakdown are unsaturated di- and tri-galacturonic acids, in addition to saturated mono-, di- and tri-galacturonic acids. Pentagalacturonic acid is split preferentially into saturated dimer plus unsaturated trimer, or into saturated trimer plus unsaturated dimer; at a lower rate, it is also split into monomer and unsaturated tetramer. Unsaturated pentamer is split into unsaturated dimer plus unsaturated trimer. Tetragalacturonic acid is split some-what preferentially at the central bond to form dimer and unsaturated dimer, but it is also split into monomer and unsaturated trimer. Unsaturated tetramer is split only at the central bond to yield only unsaturated dimer. Trigalacturonic acid is split into monomer and unsaturated dimer. Unsaturated trimer is cleaved into saturated dimer and probably 4-deoxy-l-5-threo-hexoseulose uronic acid, which has not yet been directly identified. Neither saturated nor unsaturated digalacturonic acid is attacked. The unsaturated digalacturonic acid was isolated and proved to be O-(4-deoxy-β-l-5-threo-hexopyranos-4-enyluronic acid)-(1→4)-d-galacturonic acid.  相似文献   

8.
1. The Michaelis–Menten parameters for the papain-catalysed hydrolysis of a number of alkyl, aryl and alkyl-thiol esters of hippuric acid have been determined. 2. For all the aryl esters and most of the alkyl esters studied, the catalytic constant, k0, is 2–3sec.−1 and most probably represents deacylation of the common intermediate, hippuryl-papain. 3. Two alkyl esters and hippurylamide, however, have catalytic rate constants, k0, less than 2–3sec.−1. It is possible to interpret all the available kinetic data in terms of a three-step mechanism in which an enzyme–substrate complex is first formed, followed by acylation of the enzyme through an essential thiol group, followed by deacylation of the acyl-enzyme. 4. The logarithm of the ratio of the Michaelis–Menten parameters, which reflect the acylation rate constant, for four aryl esters of hippuric acid studied give a linear Hammett plot against the substituent constant, σ. Arguments are presented that indicate acid as well as nucleophilic catalysis in the acylation process and that the most likely proton donor is an imidazolium ion. 5. It is suggested that this imidazolium ion is part of the same histidine residue that has been tentatively implicated in the deacylation process (Lowe & Williams, 1965b). 6. A new mechanism is proposed for the papain-catalysed hydrolysis of N-acyl-α-amino acid derivatives.  相似文献   

9.
1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cisciscis-octadecatrienoic acid, non-conjugated transcis (cistrans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid.  相似文献   

10.
Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation.  相似文献   

11.
Sodium extrusion (JoutNa) was measured across the gills of rainbow trout, Salmo gairdneri, adapted to sea water (SW) using a gill-irrigation system of small volume. The potential difference (TEP) was also measured under similar conditions. JoutNa was usually between 100–250 µeq (100 g)–1 h–1, about an order of magnitude faster than in fresh water (FW)-adapted trout, but slower than has been reported for any other marine teleost. The TEP was between 10–11 mV, body fluids positive to SW. When the external medium was changed from SW to FW JoutNa was reduced to about 25 % of the initial value, and the TEP was reduced by 40–50 mV (i.e. body fluids negative by 30–40 mV). Addition of either Na+ or K+ in SW concentrations reversed the changes; JoutNa increased and the gill repolarized. The electrical behavior and sodium efflux in irrigated trout gill is qualitatively the same as has been reported for unanaesthetized, free-swimming fish of other species. Thus, the irrigated gill provides an adequate model for studying the mechanism of sodium extrusion in marine teleosts.  相似文献   

12.
Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae.  相似文献   

13.
The members of the Scabiosa genus are one of the traditional medicinal plants used in the treatment of many diseases, in particular the treatment of scabies. In this study, it was aimed to determine antioxidant activities and chemical composition of methanolic extracts of leaves and flowers of Scabiosa columbaria subsp. columbaria var. columbaria. The phenolic contents of both parts of the plant were analyzed by LC–MS/MS. A total of 6 phenolic compounds were determined and chlorogenic acid was the major compound in both flower and leaf parts of the plants, with 5936.052 µg/g and 8021.666 µg/g, respectively. 6 different methods were used to determine the antioxidant activity of the plant parts. Both leaf and flower parts of the plant showed high antioxidant activity in all tested methods and the antioxidant activity values of the leaf part were measured higher than those of the flower part for four tests. The methanol extracts of the plant parts was analyzed with GC–MS and number of the essential oil compounds in the leaf and flower parts were determined as 17 and 13, respectively. Linalool compound was also found to be common in both parts of the plant. The major compounds of the essential oils were identified as 4-Octadecenal (30.01%) in the flower and carvone (35.44%) in the leaf. In addition, terpene derivatives was determined as 90.32% of the highest essential oil group in the leaf, while this value was determined as 1.42% in the flower. For the flower, aromatics were determined as the main component group with 21.31%.  相似文献   

14.
Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5–100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.  相似文献   

15.
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.  相似文献   

16.
The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100–3600 cm–1, 2800–3050 cm–1 and 1680–1780 cm–1 proved by the differences in the absorbance ratios A 3009 cm−1/A 2922 cm−1, A 3009 cm−1/A 2853 cm−1, A 3009 cm−1/A 1744 cm−1, A 1744 cm−1/A 2922 cm−1. These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (p<0.05). The IC50 values of crude coffee oils were lower than those of heated samples. The antioxidant activity of oils was attributed to both antioxidant compounds with free-radical scavenging capacity and to lipids oxidation products generated by heating. In the first 6 h of incubation, the inhibitory activity of crude oils against E. coli and E. faecalis was not significantly different to the control (p>0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05). The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated coffee oils against the tested bacteria.  相似文献   

17.
Nutrient management practices play a significant role in improving the nutritional quality of tomato. The present study deals with the evaluation of compost prepared using Effective Microorganisms (EM), on antioxidant and defense enzyme activities of Tomato (Lycopersicon esculentum). A field experiment with five treatments (control, chemical fertilizer and EM compost alone and in combination) was conducted in randomized block design. An increment of 31.83% in tomato yield was recorded with the combined use of EM compost and half recommended dose of chemical fertilizers (N50P30K25 + EM compost at the rate of 5 t ha−1). Similarly, fruit quality was improved in terms of lycopene content (35.52%), antioxidant activity (24–63%) and defense enzymes activity (11–54%), in tomatoes in this treatment as compared to the application of recommended dose of fertilizers. Soil microbiological parameters also exhibited an increase of 7–31% in the enzyme activities in this treatment. Significant correlation among fruit quality parameters with soil microbiological activities reveals the positive impact of EM compost which may be adopted as an eco-friendly strategy for production of high quality edible products.  相似文献   

18.
Lepidium latifolium Linn. (perennial pepperweed) is one of the preferred phytofoods among cold arid region of Ladakh, India and its leaves contribute significantly to people''s diet. This study was conducted to determine its nutritive value and antioxidant activity. Plant samples from three different locations were selected in the present study. Results showed that this plant is an excellent source of glucosinolates, notably sinigrin that is present in very high amount (∼70–90%). Its value ranged from 149 to 199 µg per g fresh weight. Fatty acid composition analysis showed that its leaves were abundant in unsaturated fatty acids, specifically linolenic acid (18∶3) whose percentage is about 50%. Higher glucose and crude protein along with higher nitrogen to sulfur ratio, supplements the nutritive value of this plant. Based on total phenol, flavanoids, free radical scavenging activity and DNA protective activity showed that this ecotype of perennial pepperweed contains high antioxidant properties. The percentage inhibition for O2 scavenging activity ranged from 41.3% to 83.9%. Higher content of phenols (26.89 to 50.51 mg gallic acid equivalents per g dry weight) and flavanoids (38.66 to 76.00 mg quercetin equivalents per g dry weight) in leaves could be responsible for the free radical scavenging activity of this plant. Depending upon the location of the plants, variations were observed in different activities. Based on the systematic evaluation in this study, preparations of Lepidium latifolium from Ladakh can be promoted as substitute to dietary requirements.  相似文献   

19.
20.
The loss of soybean yield to Brazilian producers because of a water deficit in the 2011–2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-independent Dehydration Responsive Element Binding (DREB) gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM) soybean lines containing 2–17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193) were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号