首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.  相似文献   

2.
【目的】研究废水中产超广谱β-内酰胺酶大肠杆菌中可移动质粒在耐药基因水平传播机制中的作用。【方法】对污水厂分离所得的50株产ESBLs大肠杆菌进行接合试验,并对所得的接合子采用纸片扩散法测定其对15种常见药物的耐药表型,针对质粒介导的产ESBLs菌株的耐药基因设计7对特异性引物对接合子进行PCR扩增。【结果】研究结果显示,80份水样分离得50株产ESBLs大肠杆菌,共接合成功35株细菌,接合成功率高达70%。接合子与供体菌相比,均发生耐药谱型的改变,且存在丢失一种或几种药物耐药性且产生另一种或几种药物耐药性的现象。PCR扩增结果显示,接合子与供体菌相比,耐药基因型有所减少或不变,bla_(TEM)、bla_(CTX-M)基因全部接合成功,bla_(SHV)基因仅1株未接合成功,耐氟喹诺酮类基因未发生转移。【结论】本研究表明,不同的耐药基因可能位于不同的可移动质粒上,可移动质粒在大肠杆菌耐药性水平传播的过程中起到了十分重要的作用。  相似文献   

3.
The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.  相似文献   

4.
Soil is a reservoir of microbial diversity and the most supportive habitat for acquiring and transmitting antimicrobial resistance. Resistance transfer usually occurs from animal to soil and vice versa, and it may ultimately appear in clinical pathogens. In this study, the southwestern highlands of Saudi Arabia were studied to assess the bacterial diversity and antimicrobial resistance that could be affected by the continuous development of tourism in the region. Such effects could have a long-lasting impact on the local environment and community. Culture-dependent, quantitative polymerase chain reaction (qPCR), and shotgun sequencing-based metagenomic approaches were used to evaluate the diversity, functional capabilities, and antimicrobial resistance of bacteria isolated from collected soil samples. Bacterial communities in the southwestern highlands were mainly composed of Proteobacteria, Bacteroidetes, and Actinobacteria. A total of 102 antimicrobial resistance genes (ARGs) and variants were identified in the soil microbiota and were mainly associated with multidrug resistance, followed by macrolide, tetracycline, glycopeptide, bacitracin, and beta-lactam antibiotic resistance. The mechanisms of resistance included efflux, antibiotic target alteration, and antibiotic inactivation. qPCR confirmed the detection of 18 clinically important ARGs. In addition, half of the 49 identified isolates were phenotypically resistant to at least one of the 15 antibiotics tested. Overall, ARGs and indicator genes of anthropogenic activities (human-mitochondrial [hmt] gene and integron-integrase [int1]) were found in relatively lower abundance. Along with a high diversity of bacterial communities, variation was observed in the relative abundance of bacterial taxa among sampling sites in the southwestern highlands of Saudi Arabia.  相似文献   

5.
Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.  相似文献   

6.
The effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca. Interbird variabilities in ileal bacterial communities were reduced (3 to 7 days posthatch) in chicks fed with feed containing antimicrobial agents. Avilamycin and flavophospholipol had the most consistent effect on gut microbial communities. Operational taxonomic units (OTU) linked to changes in gut microbiota in birds on antimicrobial-supplemented diets were characterized and identified. Some OTUs could be identified to the species level; however, the majority could be only tentatively classified to the genus, family, order, or domain level. OTUs 140 to 146 (Lachnospiraceae), OTU 186/188 (Lactobacillus johnsonii), OTU 220 (Lachnospiraceae), OTUs 284 to 288 (unclassified bacterial spp. or Ruminococcaceae), OTU 296/298 (unclassified bacterium or Clostridiales), and OTU 480/482 (Oxalobacteraceae) were less prevalent in the guts of chicks fed antimicrobial-supplemented diets. OTU 178/180 (Lactobacillus crispatus), OTU 152 (Lactobacillus reuteri or unclassified Clostridiales), OTU 198/200 (Subdoligranulum spp.), and OTU 490/492 (unclassified bacterium or Enterobacteriaceae) were less prevalent in the gut of chicks raised on the antimicrobial-free diet. The identification of key bacterial species influenced by antimicrobial-supplemented feed immediately posthatch may assist in the formulation of diets that facilitate beneficial gut microbial colonization and, hence, the development of alternatives to current antimicrobial agents in feed for sustainable poultry production.  相似文献   

7.
江苏部分地区食源性和人源沙门氏菌的多重耐药性研究   总被引:19,自引:0,他引:19  
从江苏省部分地区收集了117个沙门氏菌分离株,其中食物源和人源菌株分别有81株和36株。16种抗生素敏感性试验表明,有111个分离株对2种或2种以上的抗生素有耐药性,人源沙门氏菌分离株的抗生素耐药率比食物源的高,单一抗生素以链霉素耐药率(92.3%,108/117)最高。对5种或5种以上抗生素耐药的分离株有59株(50.4%),其中对特定六种抗生素:氨苄青霉素、氯霉素、链霉素、磺胺、四环素和卡那霉素耐药(ACSSuTK,R型)的菌株有12株。设计18对耐药基因和I类整合子保守区的引物,对36株有不同来源和耐药特征的多重耐药菌株进行耐药基因和I类整合子的检测,PCR扩增结果与抗生素敏感性表型一致。有30株细菌携带有I类整合子,大小为0.3、0.6、1.0、1.2和1.6kb,其中1.6kb(aadA5-dfr17)大小的整合子在25株细菌中分布(24/36)。接合试验表明,氨苄青霉素、氯霉素、链霉素、甲氧苄氨嘧啶和四环素的耐药特性是由接合性质粒携带。结果显示,耐药基因多数由I类整合子和质粒携带,可以通过接合试验发生转移,可移动的DNA成分可能在耐药特性的转移和分布中起到重要作用。  相似文献   

8.
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes—genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health.  相似文献   

9.
The incidence of antimicrobial resistance and expressed and unexpressed resistance genes among commensal Escherichia coli isolated from healthy farm animals at slaughter in Great Britain was investigated. The prevalence of antimicrobial resistance among the isolates varied according to the animal species; of 836 isolates from cattle tested only 5.7% were resistant to one or more antimicrobials, while only 3.0% of 836 isolates from sheep were resistant to one or more agents. However, 92.1% of 2480 isolates from pigs were resistant to at least one antimicrobial. Among isolates from pigs, resistance to some antimicrobials such as tetracycline (78.7%), sulphonamide (66.9%) and streptomycin (37.5%) was found to be common, but relatively rare to other agents such as amikacin (0.1%), ceftazidime (0.1%) and coamoxiclav (0.2%). The isolates had a diverse range of resistance gene profiles, with tet(B), sul2 and strAB identified most frequently. Seven out of 615 isolates investigated carried unexpressed resistance genes. One trimethoprim-susceptible isolate carried a complete dfrA17 gene but lacked a promoter for it. However, in the remaining six streptomycin-susceptible isolates, one of which carried strAB while the others carried aadA, no mutations or deletions in gene or promoter sequences were identified to account for susceptibility. The data indicate that antimicrobial resistance in E. coli of animal origin is due to a broad range of acquired genes.  相似文献   

10.
The genus Xanthomonas contains plant pathogens exhibiting innate resistance to a range of antimicrobial agents. In other genera, multidrug resistance is mediated by a synergy between a low-permeability outer membrane and expression of a number of multidrug efflux systems. This report describes the isolation of a novel gene cluster xmeRSA from Xanthomonas strain IG-8 that mediates copper chloride resistance. Subsequent analysis of these genes showed that they were responsible for the high level of multiple resistance in this strain and were homologues of the sme system of Stenotrophomonas maltophilia. Knock-out mutants of this gene cluster indicate that these genes are required for the copper resistance phenotype of strain IG-8. Expression analysis using lacZ fusions indicates that the genes are regulated by copper and other antimicrobials. Bioinformatic analysis suggests that these genes were acquired by horizontal gene transfer.  相似文献   

11.
The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing) microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.  相似文献   

12.
多重耐药菌在人类、动物和环境的耐药和传播机制   总被引:2,自引:1,他引:1  
王娟  王新华  徐海 《微生物学报》2016,56(11):1671-1679
抗生素等抗菌药物的滥用在全球范围内造成了多重耐药菌的传播。多重耐药菌(Multidrug resistant organisms,MDRO)以及耐药基因(Antibiotic resistance genes,ARGs)可在人类、动物和环境之间进行传播,尤其是ARGs可以通过水平转移的方式在同种属或者不同种属的菌群之间进行传播,使得细菌耐药问题日益严重,耐药机制趋于复杂,疾病治疗更加困难,对人类公众健康造成严重的威胁。因此抗生素等抗菌药物的使用应加以规范。  相似文献   

13.
目的了解20株泛耐药鲍氏不动杆菌的菌株亲缘性。方法完成该组泛耐药鲍氏不动杆菌2种与耐药相关的看家基因和54种水平转移获得与β-内酰胺类、氨基糖苷类、喹诺酮类耐药相关基因以及13种接合性质粒、转座子、插入序列、整合子等可移动遗传元件遗传标记检测,并对检测结果作样本聚类分析。结果20株泛耐药鲍氏不动杆菌已经发生演化,并存在2个克隆传播:1-4—6号菌株和2—5—7—8—9—10—11—12—13—14—15-16—17—18-19号菌株。结论与耐药相关的看家基因和水平转移获得的耐药基因均为显性遗传,本研究耐药菌所观察的表型与之相对应,为追溯耐药菌传播途径提供了方便。  相似文献   

14.
Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200–700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.  相似文献   

15.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

16.
Human commensal microbiota are an important determinant of health and disease of the host. Different human body sites harbour different bacterial microbiota, bacterial communities that maintain a stable balance. However, many of the factors influencing the stabilities of bacterial communities associated with humans remain unknown. In this study, we identified putative bacteriocins produced by human commensal microbiota. Bacteriocins are peptides or proteins with antimicrobial activity that contribute to the stability and dynamics of microbial communities. We employed bioinformatic analyses to identify putative bacteriocin sequences in metagenomic sequences obtained from different human body sites. Prevailing bacterial taxa of the putative bacteriocins producers matched the most abundant organisms in each human body site. Remarkably, we found that samples from different body sites contain different density of putative bacteriocin genes, with the highest in samples from the vagina, the airway, and the oral cavity and the lowest in those from gut. Inherent differences of different body sites thus influence the density and types of bacteriocins produced by commensal bacteria. Our results suggest that bacteriocins play important roles to allow different bacteria to occupy several human body sites, and to establish a long‐term commensal relationship with human hosts.  相似文献   

17.
Although the gut microbiota is known to provide many beneficial functions to animal hosts, such as aiding in digestion, fat metabolism, and immune function, relatively little is known about the gut microbiota of passerines. Gut microbes may have both beneficial and detrimental impacts on the fitness of migratory passerines; however physiological and morphological changes associated with prolonged migratory flight may cause disruptions of the stable microbiota and potentially a loss of function. Fecal samples were collected from Swainson's thrushes Catharus ustulatus and gray catbirds Dumetella carolinensis immediately after crossing the Gulf of Mexico during spring migration and before crossing during fall, and microbiota communities were analyzed using next‐generation sequencing. Microbiota communities were generally dominated by Firmicutes and Proteobacteria, with potential pathogens as well as potentially beneficial bacteria identified in all birds. Energetic condition of migrants was not significantly related to overall microbiota community structure though it cannot be conclusively stated that migratory flight does not impact the microbiota. Spring and fall migrants showed clear differences in microbiota communities, indicating that environmental factors influence the gut microbiota of these species more than host genetics.  相似文献   

18.
Filter feeding is a biotic process that brings waterborne bacteria in close contact with each other and may thus support the horizontal transfer of their antimicrobial resistance genes. This laboratory study investigated whether the freshwater sponge Ephydatia fluviatilis supported the transfer of vancomycin resistance between two Enterococcus faecalis strains that we previously demonstrated to exhibit pheromone responsive plasmid conjugation. Microcosm experiments exposed live and dead colonies of laboratory - grown sponges to a vancomycin-resistant donor strain and a rifampicin-resistant recipient strain of Ent. faecalis. Enterococci with both resistance phenotypes were detected on double selection plates. In comparison to controls, abundance of these presumed transconjugants increased significantly in water from sponge microcosms. Homogenized suspensions of sponge cells also yielded presumed transconjugants; however, there was no significant difference between samples from live or dead sponges. Fluorescent in situ hybridization analysis of the sponge cell matrix using species-specific probes revealed the presence of enterococci clusters with cells adjacent to each other. The results demonstrated that sponge colonies can support the horizontal transfer of antimicrobial resistance although the mechanism underlying this process, such as binding of the bacteria to the sponge collagen matrix, has yet to be fully elucidated.  相似文献   

19.
Different factors may modulate the gut microbiota of animals. In any particular environment, diet, genetic factors and human influences can shape the bacterial communities residing in the gastrointestinal tract. Metagenomic approaches have significantly expanded our knowledge on microbiota dynamics inside hosts, yet cultivation and isolation of bacterial members of these complex ecosystems may still be necessary to fully understand interactions between bacterial communities and their host. A dual approach, involving culture‐independent and ‐dependent techniques, was used here to decipher the microbiota communities that inhabit the gastro intestinal tract of free‐range, broiler and feral chickens. In silico analysis revealed the presence of a core microbiota that is typical of those animals that live in different geographical areas and that have limited contact with humans. Anthropic influences guide the metabolic potential and the presence of antibiotic resistance genes of these different bacterial communities. Culturomics attempts, based on different cultivation conditions, were applied to reconstruct in vitro the microbiota of feral chickens. A unique strain collection representing members of the four major phyla of the poultry microbiota was assembled, including bacterial strains that are not typically retrieved from the chicken gut.  相似文献   

20.
The genomics and proteomics of biofilm formation   总被引:2,自引:0,他引:2  
Bacterial communities that are attached to a surface, so-called biofilms, and their inherent resistance to antimicrobial agents are a cause of many persistent and chronic bacterial infections. Recent genomic and proteomic studies have identified many of the genes and gene products differentially expressed during biofilm formation, revealing the complexity of this developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号