首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress.  相似文献   

2.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

3.
We propose ‘the moving target hypothesis’ to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acroporid serratiosis is a form of WPX for which the bacterial pathogen (Serratia marcescens) has been established. We used long-term (1994–2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0–71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994–2004), and low in contemporary (2008–2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis.  相似文献   

4.
Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean''s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.  相似文献   

5.
6.
7.
Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community—which is critical to the healthy functioning of the coral holobiont—is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model''s assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.  相似文献   

8.
Coral disease outbreaks have increased over the last three decades, but their causal agents remain mostly unclear (e.g., bacteria, viruses, fungi, protists). This study details a 14‐month‐long survey of coral colonies in which observations of the development of disease was observed in nearly half of the sampled colonies. A bimonthly qPCR method was used to quantitatively and qualitatively evaluate Symbiodinium assemblages of tagged colonies, and to detect the presence of Vibrio spp. Firstly, our data showed that predisposition to disease development in general, and, more specifically, infection by Vibrio spp. in Acropora cytherea depended on which clades of Symbiodinium were harbored. In both cases, harboring clade D rather than A was beneficial to the coral host. Secondly, the detection of Vibrio spp. in only colonies that developed disease strongly suggests opportunistic traits of the bacteria. Finally, even if sporadic cases of switching and probably shuffling were observed, this long‐term survey does not suggest specific‐clade recruitment in response to stressors. Altogether, our results demonstrate that the fitness of the coral holobiont depends on its initial consortium of Symbiodinium, which is distinct among colonies, rather than a temporary adaptation achieved through acquiring different Symbiodinium clades.  相似文献   

9.
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.  相似文献   

10.
11.
Global increases in coral disease prevalence have been linked to ocean warming through changes in coral‐associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase‐activating system and multiple immune system‐related genes. Elevated seawater temperatures did not induce shifts in the coral‐associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.  相似文献   

12.
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.  相似文献   

13.
The abiotic environment influences a variety of ecological processes, including the emergence, transmission, and distribution of disease. In the oceans, increased temperatures associated with climate change are hypothesized to decrease host resistance and/or increase pathogen growth, virulence, or infectivity. Colonial organisms, such as corals, could face a unique challenge with respect to temperature and disease stress: heterogeneous within-colony distribution of constitutive and temperature-induced resistance to infection. This could facilitate disease if warming temperatures promote pathogen growth while decreasing resistance of some areas of the coral colony. Here, an experiment was used to test the hypothesis that temperature-induced disease resistance is heterogeneous within colonies of the sea fan coral, Gorgonia ventalina. Resistance, measured as activity of antifungal metabolites, increased (approx. 30%) with temperature only in young edge tissue, not in older center tissue, consistent with patterns of infection in older, larger sea fan colonies on Caribbean reefs.  相似文献   

14.
15.
Coral bleaching is a disease that threatens coral reefs throughout the world. The disease is correlated with higher-than-normal seawater temperatures. Data have been reported showing that bleaching of the coral Oculina patagonica during the summer in the Mediterranean Sea is the result of an infection with Vibrio shiloi. The summer temperatures induce the expression of virulence factors in the pathogen. We report here that V. shiloi produces an extracellular superoxide dismutase (SOD) at 30 degrees C, but not at 16 degrees C. An SOD(-) mutant was avirulent. The mutant adhered to corals, penetrated into coral cells, multiplied intracellularly for a short time, and then died. These data support the hypothesis that SOD protects the intracellular V. shiloi from oxidative stress caused by the high concentration of oxygen produced by intracellular zooxanthellae photosynthesis.  相似文献   

16.
17.
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions—uppermost (high irradiance), underside (low irradiance), and the colony base—representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.  相似文献   

18.
Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch''s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study.  相似文献   

19.
The ‘bacterial switch'' is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate (DMSP) to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere. Yet which ecological or physiological factors might control the bacterial switch remains a topic of considerable debate. Here we report the first field observations of dynamic changes in expression of DMSP pathway genes by a single marine bacterial species in its natural environment. Detection of taxon-specific gene expression in Roseobacter species HTCC2255 during a month-long deployment of an autonomous ocean sensor in Monterey Bay, CA captured in situ regulation of the first gene in each DMSP pathway (dddP and dmdA) that corresponded with shifts in the taxonomy of the phytoplankton community. Expression of the cleavage pathway was relatively greater during a high-DMSP-producing dinoflagellate bloom, and expression of the demethylation pathway was greater in the presence of a mixed diatom and dinoflagellate community. These field data fit the prevailing hypothesis for bacterial DMSP gene regulation based on bacterial sulfur demand, but also suggest a modification involving oxidative stress response, evidenced as upregulation of catalase via katG, when DMSP is demethylated.  相似文献   

20.
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990''s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号