首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the “white-collar” proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light.  相似文献   

2.
《Experimental mycology》1992,16(1):44-51
Alternaria alternata produces the polyketide mycotoxins alternariol (AOH) and alternariol monomethylether (AME) during the stationary growth phase when cultured in darkness. AME is formed by methylation of AOH by an alternariol-O-methyltransferase (AOH-MT). This methyltransferase was purified to near homogeneity from dark grown cultures ofA. alternata resulting in a 240-fold purification. The major protein in the enriched fraction of AOH-MT had a mass of 43,000 Da and was shown to bind the cofactorS-adenosyl-[3H]methionine by photoaffinity labeling, suggesting that this polypeptide contained the active site. WhenA. alternata was cultured in white light, the accumulation of AOH and AME was reduced to less than 4% of the production in darkness which is in agreement with earlier results. This reduction in polyketide content was accompanied by a reduced AOH-MT activity in extracts from light grown cultures. However, the activity of AOH-MT in mycelia grown in light was only reduced to 30% of the activity in dark grown cultures. Thus, it seems that the main target for light suppression of polyketide accumulation inA. alternata is either the activity or formation of the enzyme synthesizing AOH or the precursor availability for AOH synthesis.  相似文献   

3.
Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnPKS19 is solely responsible for AOH production by heterologous expression in Aspergillus nidulans. The expression profile of SnPKS19 based on previous P. nodorum microarray data correlated with the presence of AOH in vitro and its absence in planta. Subsequent characterization of the ΔSnPKS19 mutants showed that SnPKS19 and AOH are not involved in virulence and oxidative stress tolerance. Identification and characterization of the P. nodorum SnPKS19 cast light on a possible alternative AOH synthase gene in Alternaria alternata and allowed us to survey the distribution of AOH synthase genes in other fungal genomes. We further demonstrate that phylogenetic analysis could be used to differentiate between AOH synthases and the closely related NLX synthases. This study provides the basis for studying the genetic regulation of AOH production and for development of molecular diagnostic methods for detecting AOH-producing fungi in the future.  相似文献   

4.
Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus Neurospora crassa, we uncovered an oscillator mechanism that drives rhythmic spore development in the absence of the well-characterized FRQ/WCC oscillator (FWO) and in constant light, conditions under which the FWO is not functional. While this novel oscillator does not require the FWO for activity, it does require the blue-light photoreceptor CRYPTOCHROME (CRY); thus, we call it the CRY-dependent oscillator (CDO). The CDO was uncovered in a strain carrying a mutation in cog-1 (cry-dependent oscillator gate-1), has a period of ∼1 day in constant light, and is temperature-compensated. In addition, cog-1 cells lacking the circadian blue-light photoreceptor WC-1 respond to blue light, suggesting that alternate light inputs function in cog-1 mutant cells. We show that the blue-light photoreceptors VIVID and CRY compensate for each other and for WC-1 in CRY-dependent oscillator light responses, but that WC-1 is necessary for circadian light entrainment.  相似文献   

5.
The effect of different light wavelengths on the development of lesions induced by Alternaria tenuissima in broad bean leaves was investigated. Lesion development was completely suppressed in red‐light‐irradiated broad bean leaflets, irrespective of isolate or spore concentration. Pre‐treatment of leaflets with red light for 24 h before inoculation also suppressed lesion development. Alternaria tenuissima failed to produce infection hyphae in red‐light‐irradiated broad bean leaflets. These results indicate that disease suppression in broad bean leaflets is due to light‐induced resistance. Spore germination fluid (SGF) of A. tenuissima allowed non‐pathogenic Alternaria alternata to infect wounded and unwounded broad bean leaflets kept in the dark, results suggesting that SGF induced susceptibility. Red light suppressed susceptibility induced by A. tenuissima SGF; thus, lesion formation and development were suppressed when leaflets inoculated with the spores of A. alternata suspended in A. tenuissima SGF were kept under red light. From these results, we conclude that red light induced resistance in broad bean to leaf spot disease caused by A. tenuissima, and that SGF induced susceptibility of broad bean leaflets to a non‐pathogenic isolate of A. alternata.  相似文献   

6.
Effects of red and blue light at irradiances from 1.6 to 28.3 micromolar per square meter per second on chloroplast pigments, light-harvesting pigment-proteins associated with photosystem II, and the corresponding mRNA were evaluated in maize (Zea mays L.) plants (OP Golden Bantum) grown for 14 days under 14 hours light/10 hours dark cycles. Accumulation of pigments, pigment-proteins, and mRNA was less in blue than in red light of equal irradiance. The difference between blue and red light, however, varied as a function of irradiance level, and the pattern of this variation suggests irradiance-controlled activation/deactivation (switching) of blue-light receptor. The maximum reduction in blue light of mRNA and proteins associated with light-harvesting complex occurs at lower irradiance levels than the maximum reduction of chlorophylls a and b.  相似文献   

7.
Gaba V  Gressel J 《Plant physiology》1987,83(1):225-227
Acifluorfen enhancement of blue-light mediated phototropism suggested that this diphenyl-ether herbicide augments the light reaction (TY Leong, WR Briggs 1983 Plant Physiol 70: 875-881). The separation of the possible direct interaction of acifluorfen with light reactions from interactions with dark pathways has been elucidated in this paper with Trichoderma harzianum. Acifluorfen at 30 micromolar, given for 5 hours in the growth medium, stimulated the conidiation of Trichoderma in response to blue light without apparently affecting growth. Enhanced conidiation could be elicited by dipping cultures into medium with acifluorfen both before as well as 0.5 hour after inductive blue light. This postphotoinduction stimulation indicates that acifluorfen does not directly augment the effect of light by interacting with cryptochrome(s) in Trichoderma. Instead, acifluorfen most probably interacted with the dark reactions following photoinduction.  相似文献   

8.
9.
−2 . The inductive effect of 100 Jm−2 red light could be partially reversed by subsequent far-red light only one time. On the other hand, the inductive effect of 1,000 Jm−2 red light was partially reversed by subsequent far-red light irradiation at least twice. These results indicate the involvement of phytochrome in this response. The inductive effect of blue light was repeatedly reversed by subsequent far-red light irradiation, suggesting that the blue-light induction was mainly mediated by phytochrome. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

10.
《Experimental mycology》1987,11(2):150-153
The effect of visible light on alternariol content in the moldAlternaria alternata was investigated. When the mold was irradiated with white light at moderate fluence rates the mycelia contained little or no alternariol in comparison with dark controls. This reduction of alternariol content in mycelia was due primarily to blue light, although red light also resulted in a slight decrease. The results show that red light above 700 nm also inhibits alternariol synthesis. The suppressive effect of blue light was fluence rate dependent; however, very low fluence rates also caused inhibition. Growth and conidiation were not affected by the light treatments.  相似文献   

11.
We recently found that nuclei take different intracellular positions depending upon dark and light conditions in Arabidopsis thaliana leaf cells. Under dark conditions, nuclei in both epidermal and mesophyll cells are distributed baso-centrally within the cell (dark position). Under light conditions, in contrast, nuclei are distributed along the anticlinal walls (light position). Nuclear repositioning from the dark to light positions is induced specifically by blue light at >50 µmol m−2 s−1 in a reversible manner. Using analysis of mutant plants, it was demonstrated that the response is mediated by the blue-light photoreceptor phototropin2. Intriguingly, phototropin2 also seems to play an important role in the proper positioning of nuclei and chloroplasts under dark conditions. Light-dependent nuclear positioning is one of the organelle movements regulated by phototropin2. However, the mechanisms of organelle motility, physiological significance, and generality of the phenomenon are poorly understood. In this addendum, we discussed how and why nuclei move depending on light, together with future perspectives.Key words: actin, Arabidopsis, blue light, cytoskeleton, nuclear positioning, nucleus, phototropin  相似文献   

12.
A cytochemical study of the spore of Haplosporidium lusitanicum, a haplosporidian parasite recently found in Helcion pellucidus, is described. Cytochemical analysis with Sudan Black B at the light microscope level revealed that the vesicle-like droplets (VLD) situated in the apical and basal zones of the endosporoplasm in close contact with the external membrane is strongly stained dark blue. These structures are partially digested with lipase. Both reactions suggest the presence of lipoid components. The dense bodies of the exosporoplasm seem to be analogous in chemical composition. On the other hand, these two distinct structures, when subjected to Thiéry's test for glycoproteins, gave positive results. We think that these materials are complex structures simultaneously containing lipids and glycoproteins. They may be involved in the formation of the complex membranous system (“spherule”) that develops during spore maturation in this species. The matrix of haplosporosomes submitted to Thiéry's test for glycoproteins was also positive. A comparative cytochemical analysis has revealed that the external membrane of the haplosporosomes is more glycoproteinaceous than the internal one, which is more lipoidal.  相似文献   

13.
Alternaria represents the most common decay organism of the post-harvest tomato fruit. The prevalent type of decay, black rot lesion, is caused byA. alternata which may invade tomato tissue damaged by sun scald.Aspergillus niger, A. flavus andRhizopus stolonifer come in the second count level and occupy high to moderate occurrence. The mainly natural mycotoxins produced in rotted tomato are alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TA). Altertoxin I & II (AT-I & AT-II), in addition to AOH, AME and TA were produced by localA. alternata in a synthetic medium. The optimum temperature for toxin production byA. alternata IMI 89344 was 28 °C for AOH and AME, 21 °C for TA, and 14 °C for AT-I and AT-II. The growth and toxin were produced in a noticeable amount at 7 °C but drop at 35 °C. Significant inhibition in these toxins was attained at 500 ppm cinnamon oil in YES-Czapeks medium and in a tomato homogenate.  相似文献   

14.
Growing hyphae of Gelasinospora reticulispora required a continuousdark period prior to photoinduction of perithecia. The inductivedark period was interrupted by brief exposure of the hyphaeto white light so that the formation of perithecia no longertook place. Photosensitivity of the hyphae in terms of the light-breakeffect gradually changed during the inductive dark period. Sensitivityreached its maximum at the 18th hr of the dark period when anirradiation of 1?105 ergs cm–2 of near-UV light or 4?104ergs cm–2 of blue-light was sufficient for the light-break.Red and far-red light had no effect at all. The light-breakeffect was limited to the irradiated portion of the hyphae anddid not affect any unirradiated portions. Inhibitory effecton perithecial formation of continuous white light could betotally replaced for several days with intermittent irradiationof near-UV or blue light if given for 5 min every 4 hr. (Received December 18, 1973; )  相似文献   

15.
Peronospora belbahrii is a biotrophic oomycete attacking sweet basil. It propagates asexually by producing spores on dichotomously branched sporophores emerging from leaf stomata. Sporulation occurs when infected plants are incubated for at least 7.5h in the dark in moisture-saturated atmosphere at 10-27°C. Exposure to light suppresses spore formation but allows sporophores to emerge from stomata. Incandescent or CW fluorescent light of 3.5 or 6 µmoles.m2.s-1 respectively, caused 100% inhibition of spore formation on lower leaf surface even when only the upper leaf surface was exposed to light. The inhibitory effect of light failed to translocate from an illuminated part of a leaf to a shaded part of the same leaf. Inhibition of sporulation by light was temperature-dependent. Light was fully inhibitory at 15-27°C but not at 10°C, suggesting that enzyme(s) activity and/or photoreceptor protein re-arrangement induced by light occur at ≥15°C. DCMU or paraquat could not abolish light inhibition, indicating that photosystem I and photosystem II are not involved. Narrow band led illumination showed that red light (λmax 625 nm) was most inhibitory and blue light (λmax 440 nm) was least inhibitory, suggesting that inhibition in P. belbahrii, unlike other oomycetes, operates via a red light photoreceptor. Nocturnal illumination of basil in the field (4-10 µmoles.m2.s-1 from 7pm to 7am) suppressed sporulation of P. belbahrii and reduced epidemics of downy mildew, thus reducing the need for fungicide applications. This is the first report on red light inhibition of sporulation in oomycetes and on the practical application of light for disease control in the field.  相似文献   

16.
BackgroundMany Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii.AimsTo determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification.MethodsThe profiles of secondary metabolites were determined by HPLC MS.ResultsThe Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins.ConclusionsSecondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics.  相似文献   

17.
Aspergillus nidulans senses red and blue-light and employs a phytochrome and a Neurospora crassa White Collar (WC) homologous system for light perception and transmits this information into developmental decisions. Under light conditions it undergoes asexual development and in the dark it develops sexually. The phytochrome FphA consists of a light sensory domain and a signal output domain, consisting of a histidine kinase and a response regulator domain. Previously it was shown that the phytochrome FphA directly interacts with the WC-2 homologue, LreB and another regulator, VeA. In this paper we mapped the interaction of FphA with LreB to the histidine kinase and the response regulator domain at the C-terminus in vivo using the bimolecular fluorescence complementation assay and in vitro by co-immunoprecipitation. In comparison, VeA interacted with FphA only at the histidine kinase domain. We present evidence that VeA occurs as a phosphorylated and a non-phosphorylated form in the cell. The phosphorylation status of the protein was independent of the light receptors FphA, LreB and the WC-1 homologue LreA.  相似文献   

18.
《Plant science》1986,43(2):135-140
When spores of the fern Pteris vittata are induced to germinate on water in the light, they develop solely a rhizoid. Upon addition of mineral salt medium and transfer into darkness they develop male gametangia directly at the spore. This precocious antheridiogenesis is inhibited by light. Ohytochrome and a blue-light photoreceptor are both involved in the control. Ions are required for the light-dependent inhibition of antheridia formation. It is concluded that spores are determined generatively while light inhibits the generative tendency and promotes the vegetative development.  相似文献   

19.
In a fern, Pteris vittata, inhibition by low-energy blue lightof phytochrome-dependent spore germination was counteractedby anerobiosis and respiratory inhibitors, such as KCN and NaN3.A 50% inhibition of spore germination in a medium containing0.3 mM NaN3 required about 8 times longer duration of blue lightirradiation compared with the control. The counteracting effectof NaN3 continued for about 32 hr after withdrawal of the inhibitor.However, NaN3 neither induced dark germination nor counteractedthe far-red light inhibition of spore germination. Reducingagents and uncouplers were tested and dithionite and arsenateslightly reversed the blue light inhibition of spore germination. (Received December 17, 1981; Accepted July 8, 1982)  相似文献   

20.
Aspergillus spp. are frequently occurring seed-colonizing fungi that complete their disease cycles through the development of asexual spores, which function as inocula, and through the formation of cleistothecia and sclerotia. We found that development of all three of these structures in Aspergillus nidulans, Aspergillus flavus, and Aspergillus parasiticus is affected by linoleic acid and light. The specific morphological effects of linoleic acid include induction of precocious and increased asexual spore development in A. flavus and A. parasiticus strains and altered sclerotium production in some A. flavus strains in which sclerotium production decreases in the light but increases in the dark. In A. nidulans, both asexual spore production and sexual spore production were altered by linoleic acid. Spore development was induced in all three species by hydroperoxylinoleic acids, which are linoleic acid derivatives that are produced during fungal colonization of seeds. The sporogenic effects of these linoleic compounds on A. nidulans are similar to the sporogenic effects of A. nidulans psi factor, an endogenous mixture of hydroxylinoleic acid moieties. Light treatments also significantly increased asexual spore production in all three species. The sporogenic effects of light, linoleic acid, and linoleic acid derivatives on A. nidulans required an intact veA gene. The sporogenic effects of light and linoleic acid on Aspergillus spp., as well as members of other fungal genera, suggest that these factors may be significant environmental signals for fungal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号