首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth.

Results

We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade.

Conclusions

Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
  相似文献   

2.
The production of enzymes and the colonization of leaves by Leucoagaricus gongylophorus were investigated to further understand the digestive interactions of leaf-cutting ant colonies. The enzymes detected were indicative of a saprophytic origin of this fungus, producing all the enzymes necessary for plant tissue breakdown. Enhanced activities of certain enzymes in the fungus garden extracts may be due to the particular behaviour of the adult worker ants that concentrate fungal acquired enzymes in the rectal fluid and subsequently defaecate these enzymes onto the leaves. The production of chitinases by the fungus may be an ancestral vestige of lower attines, and may have a role as agonists of invading microbes. Growth of the fungus on plant cell wall medium resulted in highest enzyme activity against pectin, reflecting the fact that polygalacturonans comprise the main matrix of the primary plant cell wall. SEM shows that L. gongylophorus does not form specialized structures for cell wall penetration, but gains access to the inner plant tissue at the cut edges of the leaf fragments. Enzymes secreted by the fungus were compared to those seen in larval and adult leaf-cutting ants, demonstrating the inter-dependence of the symbiotic relationship between the ants and their fungi.  相似文献   

3.
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest.  相似文献   

4.
Streptomyces spp. are common symbionts of the leaf-cutting ant species Acromyrmex octospinosus, which feeds on basidiomycete fungus leaf matter and harvests the lipid- and carbohydrate-rich gongylidia as a food source. A. octospinosus and other ant genera use antifungal compounds produced by Streptomyces spp. and other actinomycetes in order to help defend their fungal gardens from parasitic fungi. Herein, we report the draft genome sequence of Streptomyces strain S4, an antifungal-producing symbiont of A. octospinosus.  相似文献   

5.
One of the more fascinating features of fungus-gardening ants (Attini: Formicidae) is their fidelity to their lineage-specific fungal symbionts. Among the derived higher-attine ants (leafcutter ants and close relatives), it is thought that most leaf-cutting ants grow Attamyces fungus whereas most Trachymyrmex ants grow ‘Trachymyces’ fungus, but there exist exceptions to this clade-to-clade correspondence between ants and fungi. The exceptions are inconsistent with strict one-to-one coevolution, which suggests that ants sometimes are able to switch to novel fungi. Such switches appear to be largely constrained and ants are generally faithful to their species-specific fungi. Prior experiments demonstrated no clear fitness consequences of growing novel fungi over the short-term when the ant Trachymyrmex septentrionalis was symbiont-switched by forcing it to grow Attamyces leaf-cutter fungus. We hypothesized that long-term ant-fungal fidelity is constrained either by physiological differences among fungal species or by garden diseases that symbiont-switched ants cannot control. Repeat experiments in a different location show that T. septentrionalis colonies switched to grow Attamyces exhibit sudden declines in garden biomass and consequent fitness reductions due to garden destruction by pathogens, whereas control colonies (Trachymyrmex ants cultivating Trachymyces fungus) do not show parallel garden declines. These patterns are mirrored in symbiont-switch experiments conducted on colonies in Trachymyrmex turrifex. Disease microbes selecting on ant-cultivar combinations therefore can constrain switches to novel cultivars and maintain combinations that are more resistant to disease.  相似文献   

6.
Leaf-cutting ants interact naturally with a range of antagonistic microorganisms, among them the soil-borne fungus Syncephalastrum. The antagonism of this fungus to the leaf-cutting ants’ fungal cultivar has been shown in studies without the ant queens. So far, the impacts of this fungus on whole colonies (queenright) of leaf-cutting ants are unknown. We assessed the impacts of Syncephalastrum on queenless and queenright colonies of Acromyrmex subterraneus subterraneus. In general, Syncephalastrum negatively impacted leaf cutting but not midden production or colony weight. This impact was greater in queenless colonies. Nevertheless, it did not compromise the survival of any colony. This indicates that the virulence of this fungus to leaf-cutting ant colonies may be limited in a more realistic set-up than previously reported. We propose that future laboratory studies also use queenright colonies where possible, and that the diverse species of leaf-cutting ants also be considered.  相似文献   

7.
Fungus gardens of the basidiomycete Leucocoprinus gongylophorus sustain large colonies of leaf-cutting ants by degrading the plant material collected by the ants. Recent studies have shown that enzyme activity in these gardens is primarily targeted toward starch, proteins and the pectin matrix associated with cell walls, rather than toward structural cell wall components such as cellulose and hemicelluloses. Substrate constituents are also known to be sequentially degraded in different sections of the fungus garden. To test the plasticity in the extracellular expression of fungus-garden enzymes, we measured the changes in enzyme activity after a controlled shift in fungal substrate offered to six laboratory colonies of Atta cephalotes. An ant diet consisting exclusively of grains of parboiled rice rapidly increased the activity of endo-proteinases and some of the pectinases attacking the backbone structure of pectin molecules, relative to a pure diet of bramble leaves, and this happened predominantly in the most recently established top sections of fungus gardens. However, fungus-garden amylase activity did not significantly increase despite the substantial increase in starch availability from the rice diet, relative to the leaf diet controls. Enzyme activity in the older, bottom sections of fungus gardens decreased, indicating a faster processing of the rice substrate compared to the leaf diet. These results suggest that leaf-cutting ant fungus gardens can rapidly adjust enzyme activity to provide a better match with substrate availability and that excess starch that is not protected by cell walls may be digested by the ants rather than by the fungus-garden symbiont.  相似文献   

8.
Fungus gardens of leaf-cutting ants harbor diverse alien fungi in addition to their fungal cultivar. Previous work suggested that alien microorganisms are likely derived from the substrata foraged by ant workers and incorporated into the fungus gardens. To test this hypothesis, we sampled 1014 garden fragments from 16 field colonies of Atta sexdens rubropilosa (a dicot-cutting ant) and Atta capiguara (a grass-cutting ant) in Brazil. From a total of 615 fungal isolates recovered, we observed similar diversity of fungi between colonies of both ant species. However, fungal communities differed in composition of taxa between ant colonies. Trichoderma spirale, Trichosporon chiarellii and Penicillium citrinum were prevalent accounting for 18.5%, 12.2% and 11.7% of the total isolates, respectively. As expected, fungal communities clustered in two major groups supporting the hypothesis that plant substratum has an impact on the composition of the alien fungi found in leaf-cutting ant gardens.  相似文献   

9.
Apart from growing fungi for nutrition, as seen in the New World Attini, ants cultivate fungi for reinforcement of the walls of their nests or tunnel-shaped runway galleries. These fungi are grown on organic material such as bark, epiphylls or trichomes, and form stable ‘carton structures’. In this study, the carton of the runway galleries built by Azteca brevis (Formicidae, Dolichoderinae) on branches of Tetrathylacium macrophyllum (Flacourtiaceae) is investigated. For the first time, molecular tools are used to address the biodiversity and phylogenetic affinities of fungi involved in tropical ant carton architecture, a previously neglected ant–fungus mutualism.The A. brevis carton involves a complex association of several fungi. All the isolated fungi were unequivocally placed within the Chaetothyriales by DNA sequence data. Whereas five types of fungal hyphae were morphologically distinguishable, our DNA data showed that more species are involved, applying a phylogenetic species concept based on DNA phylogenies and hyphal morphology. In contrast to the New World Attini with their many-to-one (different ant species—one fungal cultivar) pattern, and temperate Lasius with a one-to-two (one ant species—two mutualists) or many-to-one (different ant species share the same mutualist) system, the A. brevis–fungi association is a one-to-many multi-species network. Vertical fungus transmission has not yet been found, indicating that the A. brevis–fungi interaction is rather generalized.  相似文献   

10.
Fungus‐growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher‐attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher‐attine ants have enhanced activity of protein‐digesting enzymes, whereas gardens of leaf‐cutting ants also have increased activity of starch‐digesting enzymes. However, the enzyme activities of lower‐attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher‐attine and leaf‐cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower‐attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.  相似文献   

11.
The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.  相似文献   

12.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. The production of hydrolytic enzymes appears to be a key element in the parasitic process. Among the enzymes released by Trichoderma, the aspartic proteases play a major role. A gene (SA76) encoding an aspartic protease was cloned by 3' rapid amplification of cDNA ends from T. harzianum T88. The coding region of the gene is 1,593 bp long, encoding a polypeptide of 530 amino acids with a predicted molecular mass 55 kDa and a pI of 4.5. The catalytic aspartic residues characteristic of aspartic proteases are conserved with an active-site motif (DSG); however, the DSG in the N-terminal lobe is unusual in that Ser replaced Thr. Northern blot analysis indicated that SA76 was induced in response to different fungal cell walls. Aspartic protease SA76 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (10.5 U mL(-1)) 72 h after induction with galactose. The temperature optimum of the enzyme was 45 degrees C and its pH optimum was 3.5. The culture supernatant of the S. cerevisiae strain that expressed the aspartic protease SA76 was able to inhibit the growth of five phytopathogenic fungi. The inhibition of mycelial growth varied between 7% and 38%.  相似文献   

13.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

14.
Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.  相似文献   

15.
Although only discovered in 1999, the symbiotic filamentous actinobacteria present on the integument of certain species of leaf-cutting ants have been the subject of intense research. These bacteria have been shown to specifically suppress fungal garden parasites by secretion of antibiotics. However, more recently, a wider role for these bacteria has been suggested from research revealing their generalist anti-fungal activity. Here we show, for the first time, evidence for a role of these bacteria in the defence of young worker ants against a fungal entomopathogen. Experimental removal of the bacterial bio-film using an antibiotic resulted in a significant increase in susceptibility of worker ants to infection by the entomopathogenic fungus Metarhizium anisopliae. This is the first direct evidence for the advantage of maintaining a bacterial bio-film on the cuticle as a defensive strategy of the ants themselves and not exclusively for protection of the fungus garden.  相似文献   

16.
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.  相似文献   

17.
Evolutionary theory predicts that hosts are selected to prevent mixing of genetically different symbionts when competition among lineages reduces the productivity of a mutualism. The symbionts themselves may also defend their interests: recent studies of Acromyrmex leaf-cutting ants showed that somatic incompatibility enforces single-clone gardens within mature colonies, thereby constraining horizontal transmission of fungal symbionts. However, phylogenetic analyses indicate that symbiont switches occur frequently enough to remove most signs of host-symbiont cocladogenesis. Here we resolve this paradox by showing that transmission among newly founded Acromyrmex colonies is not constrained. All tested queens of sympatric A. octospinosus and A. echinatior offered a novel fragment of fungus garden accepted the new symbiont. The outcome was unaffected by genetic distance between the novel and the original symbiont, and by the ant species the novel symbiont came from. The colony founding stage may thus provide an efficient but transient window for horizontal transmission, in which the fungus is unable to actively defend its partnership position before the host feeds on it, so that host fecal droplets remain compatible with alternative strains during the early stage of colony founding. We discuss how brief stages of low commitment between partners may increase the evolutionary stability of ancient coevolved mutualisms.  相似文献   

18.
19.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

20.
Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent–offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant–fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号