首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of hybrid seed production can be improved by increasing the percentage of exserted stigma, which is closely related to the stigma length in rice. In the chromosome segment substitute line (CSSL) population derived from Nipponbare (recipient) and Kasalath (donor), a single CSSL (SSSL14) was found to show a longer stigma length than that of Nipponbare. The difference in stigma length between Nipponbare and SSSL14 was controlled by one locus (qSTL3). Using 7,917 individuals from the SSSL14/Nipponbare F2 population, the qSTL3 locus was delimited to a 19.8-kb region in the middle of the short arm of chromosome 3. Within the 19.8-kb chromosome region, three annotated genes (LOC_Os03g14850, LOC_Os03g14860 and LOC_Os03g14880) were found in the rice genome annotation database. According to gene sequence alignments in LOC_Os03g14850, a transition of G (Nipponbare) to A (Kasalath) was detected at the 474-bp site in CDS. The transition created a stop codon, leading to a deletion of 28 amino acids in the deduced peptide sequence in Kasalath. A T-DNA insertion mutant (05Z11CN28) of LOC_Os03g14850 showed a longer stigma length than that of wild type (Zhonghua 11), validating that LOC_Os03g14850 is the gene controlling stigma length. However, the Kasalath allele of LOC_Os03g14850 is unique because all of the alleles were the same as that of Nipponbare at the 474-bp site in the CDS of LOC_Os03g14850 among the investigated accessions with different stigma lengths. A gene-specific InDel marker LQ30 was developed for improving stigma length during rice hybrid breeding by marker-assisted selection.  相似文献   

2.
Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01?Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 ( SG ) are discussed.  相似文献   

3.
Grain weight is a major determinant of rice grain yield and is widely believed to be controlled by quantitative trait loci (QTL). We have previously reported a new major gene, Mi3, regulating grain length in rice, and that the Mi3 allele from Y34 functioned in a dominant manner. In this paper we report the fine mapping and candidate analysis of Mi3. By employing a chromosome walking strategy in the F2 population of 9311/Y34, the Mi3 gene was finally narrowed to an interval of ~?41.6?kb between the markers RM6881 and LM9 in the pericentromeric region of rice chromosome 3. According to the rice genome annotations, five putative gene loci, LOC_Os03g_29614, LOC_Os03g_29630, LOC_Os03g_29650, LOC_Os03g_29660 and LOC_Os03g_29680, were located in this candidate region. Mi3 was also determined to be a new gene for grain size in rice by allelic analysis with the previously reported genes. Our results will facilitate the cloning and functional characterization of the Mi3 gene and targeted marker-assisted breeding.  相似文献   

4.
A novel bright-green leaf mutant, bgl11, derived from Nipponbare (Oryza sativa L. ssp. japonica) treated by ethyl methanesulfonate (EMS), exhibited a distinct bright-green leaf phenotype throughout development. Chlorophyll contents of bgl11 decreased significantly than that of its wild-type parent. Genetic analysis suggested that the bright-green leaf trait was controlled by a single recessive nuclear gene, which was tentatively designed as BGL11(t). To isolate the BGL11(t) gene, a map-based cloning strategy was employed, and the gene was finally mapped in a 94.7 kb region between marker InDel11-5 and InDel11-9 on the long arm of chromosome 11, in which no gene leaded to leaf-color mutation had been mapped or cloned. Cloning and sequencing analysis revealed that, LOC_Os11g38040, which was predicted to encode an expressed protein, had a 9 bp segment deletion in the coding region of bgl11. Furthermore, the transgenic plants with wild-type gene LOC_Os11g38040 were restored to normal phenotype. Accordingly, the gene (LOC_Os11g38040) was identified as the BGL11(t) gene. These results are very valuable for further study on BGL11(t) gene and illuminating the mechanism of chloroplast development in rice.  相似文献   

5.
MicroRNAs (miRNAs) are known to fine‐tune growth, development, and stress‐induced responses. Osa‐miR1873 is a rice‐specific miRNA targeting LOC_Os05g01790. Here, we show that Osa‐miR1873 fine‐tunes rice immunity against Magnaporthe oryzae and yield traits via LOC_Os05g01790. Osa‐miR1873 was significantly upregulated in a susceptible accession but downregulated in a resistance accession at 24 h post‐inoculation (hpi) of M. oryzae. Overexpressing Osa‐miR1873 enhanced susceptibility to M. oryzae and compromised induction of defense responses. In contrast, blocking Osa‐miR1873 through target mimicry compromised susceptibility to M. oryzae and enhanced induction of defense responses. Altered expression of Osa‐miR1873 also resulted in some defects in yield traits, including grain numbers and seed setting rate. Moreover, overexpression of the target gene LOC_Os05g01790 increased rice blast disease resistance but severely penalized growth and yield. Taken together, we demonstrate that Osa‐miR1873 fine‐tunes the rice immunity‐growth trade‐off via LOC_Os05g01790, and blocking Osa‐miR1873 could improve blast disease resistance without significant yield penalty. Thus, the Osa‐miR1873‐LOC_Os05g01790 regulatory module is valuable in balancing yield traits and blast resistance.  相似文献   

6.
7.
Increasing the rice productivity from the current 10 to 12 tons/ha to meet the demand of estimated 8.8 billion people in 2035 is posing a major challenge. Wild relatives of rice contain some novel genes which can help in improving rice yield. Spikelet per panicle (SPP) is a valuable trait for determining yield potential in rice. In this study, a major QTL for increasing SPP has been identified, mapped, and transferred from African wild rice O. longistaminata to O. sativa (L.). The QTL was mapped on the long arm of chromosome 2 in a 167.1 kb region flanked by SSR markers RM13743 and RM13750, which are 1.0 cM apart, and is designated as qSPP2.2. The QTL explained up to 30% of phenotypic variance in different generations/seasons and showed positive additive effect of allele contributed by O. longistaminata. In addition, O. longistaminata allele in qSPP2.2 contributed to increase in grains per panicle, but decrease in the tillers per plant. The 167.1 kb region contains 23 predicted genes. Based on the functional annotation, three genes, LOC_Os02g44860, LOC_Os02g44990, and LOC_Os02g45010, were selected as putative candidates for characterization. Sequence analysis of the three genes revealed functional variations between the parental lines for LOC_Os02g44990 and a variation in 5′UTR for LOC_Os02g45010 which will help further to identify putative candidate gene(s). This is the first yield component QTL to be identified, mapped, and transferred from O. longistaminata.  相似文献   

8.
9.
We have used rice line Tetep as a resistant donor with the aim of mapping a durable blast resistance gene Pi-k h using RAPD and AFLP techniques in conjunction with bulk segregant analysis. An F2 mapping population consisting of 205 plants was generated by crossing Tetep with HP2216, a highly susceptible cultivar. Inoculation with specific isolate (PLP-1) of Magnaporthe grisea at seeding stage showed that the Pi-k h gene inherited as a single dominant gene in F2 population. RAPD analysis was performed with 240 primers to detect polymorphism between resistant and susceptible parents. Of these, 48 primers produced polymorphic banding pattern between resistant and susceptible parents. Bulk segregant analysis was performed with 48 primers of which 5 showed polymorphism between resistant and susceptible bulks. A 700 bp DNA band was obtained in resistant F2 plants with primer 5-129 indicating its linkage to the resistance gene. Out of 64 AFLP primer combinations used for polymorphism survey between HP 2216 and Tetep, 11 AFLP primer combinations were able to distinguish the resistant and susceptible bulks. An AFLP band of 75 bp obtained with primer combination, E-TAlM-CTC co-segregated with the resistance gene. The RAPD marker 5-129700 and AFLP75 were placed on the linkage map at a distance of 2.1 eM and 15.1 eM flanking to Pi-k hgene, respectively. The RAPD band closely linked to Pi-k h gene was sequenced and used for the development of CAPs markers which also co-segregated with resistant phenotype in the mapping population. On sequence analysis and homology search of RAPD fragment with whole rice genome sequence database and the information available on physical, genetic and sequence maps of rice, the co-segregating CAPs marker was placed at long arm of rice chromosome 11. CAPs marker developed in this study showed polymorphism in different rice cultivars grown in North-Western Himalayan region and is being used for the pyramiding of Pi-k h gene along with other blast resistance genes using marker-assisted selection.  相似文献   

10.
Hybrid weakness (HW) is an important postzygotic isolation which occurs in both intra- and inter-specific crosses. In this study, we described a novel low temperature-dependent intrasubspecific hybrid weakness in the F1 plants derived from the cross between two indica rice varieties Taifeng A and V1134. HW plants showed growth retardation, reduced panicle number and pale green leaves with chlorotic spots. Cytological assay showed that there were reduced cell numbers, larger intercellular spaces, thicker cell walls, and abnormal development of chloroplast and mitochondria in the mature leaves from HW F1 plants in comparison with that from both of the parental lines. Genetic analysis revealed that HW was controlled by two complementary dominant genes Hw3 from V1134 and Hw4 from Taifeng A. Hw3 was mapped in a 136 kb interval between the markers Indel1118 and Indel1117 on chromosome 11, and Hw4 was mapped in the region of about 15 cM between RM182 and RM505 on chromosome 7, respectively. RT-PCR analysis revealed that only LOC_Os11g44310, encoding a putative calmodulin-binding protein (OsCaMBP), differentially expressed among Taifeng A, V1134 and their HW F1. No recombinant was detected using the markers designed based on the sequence of LOC_Os11g44310 in the BC1F2 (Taifeng A//Taifeng A/V1134) population. Hence, LOC_Os11g44310 was probably the candidate gene of Hw3. Gene amplification suggested that LOC_Os11g44310 was present in V1134 and absent in Taifeng A. BLAST search revealed that LOC_Os11g44310 had one copy in the japonica genomic sequence of Nipponbare, and no homologous sequence in the indica reference sequence of 9311. Our results indicate that Hw3 is a novel gene for inducing hybrid weakness in rice.  相似文献   

11.
A rice lesion mimic mutant, lm3, was obtained by the mutagenesis of an indica cultivar, 93-11, using γ-ray radiation. Brownish lesions appeared on the leaves of lm3 at the young seedling stage and persisted until the ripening stage. The lm3 mutant was characterised by a shorter plant height and delayed heading compared with the wild-type 93-11. A genetic analysis indicated that the lesion mimic phenotype was controlled by a single recessive gene. Using simple sequence repeat (SSR) markers, the target gene LM3 was first located between marker RM5748 and RM14906 on chromosome 3. We then developed Insertion-Deletion (InDel) markers to fine-map LM3, and the locus was localised to a 29 kb region defined by two InDel markers, In12571 and In12600. Five ORFs were predicted in the candidate region, and DNA sequencing detected a single-nucleotide polymorphism (SNP) in the coding region of LOC Os03g21900. The SNP in the fourth exon (C in 93-11; T in lm3) of LOC_Os03g21900 results in the substitution of a proline (P) with a serine (S) at the 140th amino acid of the deduced uroporphyrinogen decarboxylase protein. We did not detect polymorphisms in the other predicted ORF regions between lm3 and 93-11. These results suggest that LOC_Os03g21900 is the most likely candidate gene for LM3.  相似文献   

12.
13.
Heading date is a major determinant of adaptability and yield potential in rice (Oryza sativa L.) and is influenced by photoperiod. Among chromosome segment substitution lines, the introgression line C63 contains a segment of the short arm of chromosome 6 from indica Qingluzhan 11 in the japonica Nipponbare background and exhibits a delayed heading date under both long day (LD) and short day (SD) natural field conditions. This study demonstrates that the late heading date of the C63 line is controlled by a single recessive gene, Heading date from Qingluzhan 11 (Hd-q). Hd-q was mapped to a region of less than 43.7 kb. Complementation testing revealed that Ef7 (LOC_Os06g05060), a homolog of Arabidopsis ELF3, is the candidate gene, while Hd-q is a new allele of Ef7. Sequence alignment revealed at least five Ef7 alleles among 11 rice cultivars based on polymorphism in the coding region. Unlike other alleles, Hd-q has a single nucleotide polymorphism (T/A) in exon 2, which leads to premature termination of translation. In addition to delayed heading date, Hd-q has pleiotropic effects on major agronomic characteristics, which were determined by comparing the near-isogenic line, NIL (Hd-q), with its recurrent parent Nipponbare. The Hd-q allele improved grain yield under both LD and SD conditions and in different geographical regions. Finally, a dCAPS (derived cleaved amplified polymorphic sequence) marker was developed based on the T/A polymorphism, and will be useful for introgression of the Hd-q allele via marker-assisted selection. The Hd-q allele is a useful target for the improvement of rice adaptation and production, especially at low latitudes.  相似文献   

14.
15.
Map-based cloning of the ERECT PANICLE 3 gene in rice   总被引:1,自引:0,他引:1  
Panicle architecture in rice can have a strong influence on yield. Using N-methyl-N-nitrosourea mutagenesis, we isolated an erect panicle mutant, Hep, from Hwasunchalbyeo, a glutinous japonica rice cultivar. Genetic analysis revealed that the erect panicle phenotype was controlled by a single recessive mutation designated erect panicle 3 (ep3). Genetic mapping revealed that the ep3 mutation was located on the short arm of chromosome 2 in a 0.1 cM region delimited by the STS markers STS5803-5 and STS5803-7. The ep3 locus corresponded to 46.8 kb region and contained six candidate genes. Comparison of the DNA sequences of the candidate genes from wild-type and erect panicle plants revealed a single base-pair change in the second exon of LOC_Os02g15950, which is predicted to result in a nonsense mutation. LOC_Os02g15950 encodes a putative F-box protein containing 515 amino acids and is expressed throughout the plant during all growth stages. A line carrying a T-DNA insertion in LOC_ Os02g15950 was obtained and shown to have the same phenotype as the ep3 mutant, thus confirming the identification of LOC_Os02g15950 as the ERECT PANICLE 3 (EP3) gene. The ep3 mutation causes a significant increase in the number of small vascular bundles as well as the thickness of parenchyma in the peduncle, which results in the erect panicle phenotype.  相似文献   

16.
The barley Rdg2a locus confers resistance to the leaf stripe pathogen Pyrenophora graminea and, in the barley genotype Thibaut, it is composed of a gene family with three highly similar paralogs. Only one member of the gene family (called as Rdg2a) encoding for a CC-NB-LRR protein is able to confer resistance to the leaf stripe isolate Dg2. To study the genome evolution and diversity at the Rdg2a locus, sequences spanning the Rdg2a gene were compared in two barley cultivars, Thibaut and Morex, respectively, resistant and susceptible to leaf stripe. An overall high level of sequence conservation interrupted by several rearrangements that included three main deletions was observed in the Morex contig. The main deletion of 13,692 bp was most likely derived from unequal crossing over between Rdg2a paralogs leading to the generation of a chimeric Morex rdg2a gene which was not associated to detectable level of resistance toward leaf stripe. PCR-based analyses of genic and intergenic regions at the Rdg2a locus in 29 H. vulgare lines and one H. vulgare ssp. spontaneum accession indicated large haplotype variability in the cultivated barley gene pool suggesting rapid and recent divergence at this locus. Barley genotypes showing the same haplotype as Thibaut at the Rdg2a locus were selected for a Rdg2a allele mining through allele re-sequencing and two lines with polymorphic nucleotides leading to amino acid changes in the CC-NB and LRR encoding domains, respectively, were identified. Analysis of nucleotide diversity of the Rdg2a alleles revealed that the polymorphic sites were subjected to positive selection. Moreover, strong positively selected sites were located in the LRR encoding domain suggesting that both positive selection and divergence at homologous loci are possibly representing the molecular mechanism for the generation of high diversity at the Rdg2a locus in the barley gene pool.  相似文献   

17.
The nuclear genes involved in chloroplast development and chlorophyll biosynthesis must be investigated to understand their functions in plant growth and development. In this study, we isolated and identified a unique leaf-color mutant of rice with a green-yellow phenotype before the four-leaf stage and named the mutation green-revertible chlorina 1 (grc1). The mutants had significantly lower plant height, number of tillers, and panicle length and headed significantly earlier than the wild type. The levels of chlorophylls, carotenoids, and chlorophyll precursors were also lower. The mutation in grc1 affected chloroplast ultrastructure, particularly thylakoid development. Genetic analysis indicated that the green-yellow phenotype was controlled by a single recessive gene. We mapped the grc1 gene to a 32.4-kb region on the long arm of chromosome 6. Through map-based cloning, we identified a 45-bp insertion in the genomic region of LOC_Os06g40080, which encoded a heme oxygenase. Expression of LOC_Os06g40080 was significantly down-regulated in the grc1 mutant. Subcellular localization showed that this heme oxygenase was localized in the chloroplast. In summary, we isolated and identified the gene for grc1, which plays an important role in chlorophyll biosynthesis and chloroplast development in rice.  相似文献   

18.
19.
20.
A floury endosperm mutant, osagpl2-3, was isolated from the M2 generation of japonica rice cultivar Nipponbare following ethyl methane sulfonate mutagenesis. The osagpl2-3 mutant produced a white-core endosperm compared to the transparent endosperm of the wild type (WT). The results from scanning electron microscope showed that the osagpl2-3 mutant grains comprised of round and loosely packed starch granules, some of which were compounded. The analysis for cooking and nutrition quality traits indicated that the values of gel consistency, gelatinization temperature, and rapid viscosity analysis profile of osagpl2-3 grains were lower than those of the WT. Besides, the protein content, the contents of nine different amino acids, and the thermodynamic parameters of T p and ??T 1/2 in osagpl2-3 were also different from those of the WT. Genetic analysis revealed that osagpl2-3 mutation was controlled by a single recessive gene. The osagpl2-3 gene was mapped between InDel markers R1M30 and ID1-12 on rice chromosome 1. In the candidate region of the Nipponbare genome, an annotated gene, LOC_Os01g44220 which encodes a large subunit of putative ADP-glucose pyrophosphrylase named OsAPL2 was considered the optimal candidate. Cloning and sequencing of LOC_Os01g44220 in different plants of the osagpl2-3 mutants revealed a single nucleotide mutation (G??A) in the open reading frame region, which led to a substitution of an acidic amino acid Glu (E) by a basic amino acid Lys (K) accordingly. Furthermore, the mutant site is close to the functional domain which interacts with the ADP-Glc. In brief, these results suggested that the osagpl2-3 is a new mutant of OsAPL2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号