首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Interspecific gene flow can occur in many combinations among species within the genus Quercus, but simultaneous hybridization among more than two species has been rarely analysed. The present study addresses the genetic structure and morphological variation in a triple hybrid zone formed by Q. hypoleucoides, Q. scytophylla and Q. sideroxyla in north-western Mexico.

Methods

A total of 247 trees from ten reference and 13 presumed intermediate populations were characterized using leaf shape variation and geometric morphometrics, and seven nuclear microsatellites as genetic markers. Discriminant function analysis was performed for leaf shape variation, and estimates of genetic diversity and structure, and individual Bayesian genetic assignments were obtained.

Key Results

Reference populations formed three completely distinct groups according to discriminant function analysis based on the morphological data, and showed low, but significant, genetic differentiation. Populations from the zone of contact contained individuals morphologically intermediate between pairs of species in different combinations, or even among the three species. The Bayesian admixture analysis found that three main genetic clusters best fitted the data, with good correspondence of reference populations of each species to one of the genetic clusters, but various degrees of admixture evidenced in populations from the contact area.

Conclusions

The three oak species have formed a complex hybrid zone that is geographically structured as a mosaic, and comprising a wide range of genotypes, including hybrids between different species pairs, backcrosses and probable triple hybrids.  相似文献   

2.
Meloidogyne camelliae n.sp. on camellia (Camellia japonica) from Japan and M. querciana n.sp. on pin oak (Quercus palustris) from Virginia, USA, are described and illustrated. M. camelliae n.sp. is distingnishable from other species of the genus especially by its striking perineal pattern having heavy ropelike striae forming a squarish to rectangular outline with shoulders or projections, appearing sometimes ahnost starlike. M. querciana differs from other species by its characteristic perineal pattern round to oval in outline, sometimes with a low arch, and sunken vulva surrounded by a prominent obovate area devoid of striae. M. querciana shows some relationship to M. ovalis, but differs further fxom the latter by longer larvae, absence of annules on head of larvae, and rarity of males. Examination of specimens of M. camelliae n.sp. and M. querciana n.sp. with the scanning electron microscope confirmed observations made by optical microscopy and revealed diagnostic and other structures in greater detail. In greenhouse host tests, M. camelliae infected camellia heavily, showed moderate infection on oxalis, only a trace infection on tomato, and no infection on five other plants tested; and M. querciana attacked pin oak, red oak, and American chestnut heavily, but did not infect nine other test plants. In another test, pin oak seedlings did not become infected when heavily inoculated with and grown in the presence of two populations of M. incognita incognita and one of M. incognita acrita. The common names "camellia root-knot nematode" and "oak root-knot nematode" are respectively proposed for M. camelliae and M. querciana.  相似文献   

3.
4.
MethodsWater relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra).ConclusionsQuercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas.  相似文献   

5.
6.
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such ‘magic’ or ‘multiple-effect’ traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.  相似文献   

7.
Background and Aims Studies on oaks (Quercus spp.) have often been hampered by taxonomic confusion, a situation further compounded by the occurrence of extensive interspecific hybridization. In the present study, a combination of genetic and morphological analyses was used to examine sympatric populations of Q. petraea and Q. robur at the north-western edge of their ranges in Northern Ireland, since it had previously been suggested that hybridization could facilitate the apparent rapid, long-distance dispersal of oaks following the glaciations.Methods Samples were collected from 24 sites across Northern Ireland that had been previously designated as ancient or semi-natural woodland. Genotypes were obtained from a total of 950 trees using 12 nuclear microsatellite loci, and admixture coefficients were calculated based on a Bayesian clustering approach. Individuals were also classified as Q. petraea, Q. robur or hybrids based on two objective morphometric characters shown previously to delineate pure individuals effectively. Genetically ‘pure’ individuals of both species, as defined by the Bayesian clustering, were also genotyped for five chloroplast microsatellites.Key Results Genetic and morphological analyses both indicated the presence of pure individuals of both species, as well as a continuum of intermediates. There was a good agreement between the molecular and morphological classification, with a generally clear separation between pure individuals.Conclusions Despite millennia of hybridization and introgression, genetically and morphologically pure individuals of both Q. petraea and Q. robur can be found at the edge of their range, where both species occur sympatrically. The high proportion of individuals exhibiting introgression compared with previous studies may reflect the historical role of hybridization in facilitating dispersal following the glaciations. This is further supported by the significantly higher chloroplast diversity in Q. robur compared with Q. petraea.  相似文献   

8.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

9.

Background and Aims

Low soil fertility limits growth and productivity in many natural and agricultural systems, where the ability to sense and respond to nutrient limitation is important for success. Helianthus anomalus is an annual sunflower of hybrid origin that is adapted to desert sand-dune substrates with lower fertility than its parental species, H. annuus and H. petiolaris. Previous studies have shown that H. anomalus has traits generally associated with adaptation to low-fertility habitats, including a lower inherent relative growth rate and longer leaf lifetime.

Methods

Here, a cDNA microarray is used to identify gene expression differences that potentially contribute to increased tolerance of low fertility of the hybrid species by comparing the nitrogen stress response of all three species with high- and low-nutrient treatments.

Key Results

Relative to the set of genes on the microarray, the genes showing differential expression in the hybrid species compared with its parents are enriched in stress-response genes, developmental genes, and genes involved in responses to biotic or abiotic stimuli. After a correction for multiple comparisons, five unique genes show a significantly different response to nitrogen limitation in H. anomalus compared with H. petiolaris and H. annuus. The Arabidopsis thaliana homologue of one of the five genes, catalase 1, has been shown to affect the timing of leaf senescence, and thus leaf lifespan.

Conclusions

The five genes identified in this analysis will be examined further as candidate genes for the adaptive stress response in H. anomalus. Genes that improve growth and productivity under nutrient stress could be used to improve crops for lower soil fertility which is common in marginal agricultural settings.  相似文献   

10.
A new genus of oak gallwasp, Coffeikokkos Pujade-Villar & Melika, gen. n., is described from Costa Rica. Diagnostic characters and generic limits of the new genus are discussed in detail. The new genus includes Coffeikokkos copeyensis Pujade-Villar & Melika, sp. n., which induces galls on stems of Quercus bumelioides, an endemic oak to Costa Rica, Honduras and Panama. The new species and galls are described and illustrated.  相似文献   

11.
12.

Background and Aims

The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator.

Methods

Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria).

Key Results

In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon.

Conclusions

It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses'' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure.  相似文献   

13.

Background and Aims

Genetic drift due to geographical isolation, gene flow and mutation rates together make it difficult to determine the evolutionary relationships of present-day species. In this study, population genetic data were used to model and decipher interspecific relationships, speciation patterns and gene flow between three species of spruce with similar morphology, Picea wilsonii, P. neoveitchii and P. morrisonicola. Picea wilsonii and P. neoveitchii occur from central to north-west China, where they have overlapping distributions. Picea morrisonicola, however, is restricted solely to the island of Taiwan and is isolated from the other two species by a long distance.

Methods

Sequence variations were examined in 18 DNA fragments for 22 populations, including three fragments from the chloroplast (cp) genome, two from the mitochondrial (mt) genome and 13 from the nuclear genome.

Key Results

In both the cpDNA and the mtDNA, P. morrisonicola accumulated more species-specific mutations than the other two species. However, most nuclear haplotypes of P. morrisonicola were shared by P. wilsonii, or derived from the dominant haplotypes found in that species. Modelling of population genetic data supported the hypothesis that P. morrisonicola derived from P. wilsonii within the more recent past, most probably indicating progenitor–derivative speciation with a distinct bottleneck, although further gene flow from the progenitor to the derivative continued. In addition, the occurrence was detected of an obvious mtDNA introgression from P. neoveitchii to P. wilsonii despite their early divergence.

Conclusions

The extent of mutation, introgression and lineage sorting taking place during interspecific divergence and demographic changes in the three species had varied greatly between the three genomes. The findings highlight the complex evolutionary histories of these three Asian spruce species.  相似文献   

14.

Background and Aims

Sexual reproduction is one of the most important moments in a life cycle, determining the genetic composition of individual offspring. Controlled pollination experiments often show high variation in the mating system at the individual level, suggesting a persistence of individual variation in natural populations. Individual variation in mating patterns may have significant adaptive implications for a population and for the entire species. Nevertheless, field data rarely address individual differences in mating patterns, focusing rather on averages. This study aimed to quantify individual variation in the different components of mating patterns.

Methods

Microsatellite data were used from 421 adult trees and 1911 seeds, structured in 72 half-sib families collected in a single mixed stand of Quercus robur and Q. petraea in northern Poland. Using a Bayesian approach, mating patterns were investigated, taking into account pollen dispersal, male fecundity, possible hybridization and heterogeneity in immigrant pollen pools.

Key Results

Pollen dispersal followed a heavy-tailed distribution (283 m on average). In spite of high pollen mobility, immigrant pollen pools showed strong genetic structuring among mothers. At the individual level, immigrant pollen pools showed highly variable divergence rates, revealing that sources of immigrant pollen can vary greatly among particular trees. Within the stand, the distribution of male fecundity appeared highly skewed, with a small number of dominant males, resulting in a ratio of census to effective density of pollen donors of 5·3. Male fecundity was not correlated with tree diameter but showed strong cline-like spatial variation. This pattern can be attributed to environmental variation. Quercus petraea revealed a greater preference (74 %) towards intraspecific mating than Q. robur (36 %), although mating preferences varied among trees.

Conclusions

Mating patterns can reveal great variation among individuals, even within a single even-age stand. The results show that trees can mate assortatively, with little respect for spatial proximity. Such selective mating may be a result of variable combining compatibility among trees due to genetic and/or environmental factors.  相似文献   

15.
The timing of when to initiate reproduction is an important transition in any organism's life cycle. There is much variation in flowering time among populations, but we do not know to what degree this variation contributes to local adaptation. Here we use a reciprocal transplant experiment to examine the presence of divergent natural selection for flowering time and local adaptation between two distinct populations of Mimulus guttatus. We plant both parents and hybrids (to tease apart differences in suites of associated parental traits) between these two populations into each of the two native environments and measure floral, vegetative, life-history, and fitness characters to assess which traits are under selection at each site. Analysis of fitness components indicates that each of these plant populations is locally adapted. We obtain striking evidence for divergent natural selection on date of first flower production at these two sites. Early flowering is favored at the montane site, which is inhabited by annual plants and characterized by dry soils in midsummer, whereas intermediate (though later) flowering dates are selectively favored at the temperate coastal site, which is inhabited by perennial plants and is almost continually moist. Divergent selection on flowering time contributes to local adaptation between these two populations of M. guttatus, suggesting that genetic differentiation in the timing of reproduction may also serve as a partial reproductive isolating barrier to gene flow among populations.  相似文献   

16.
The reproduction of single egg-mass isolates of Meloidogyne javanica from Crete that differed in virulence were compared on tomato (Lycopersicon esculentum) genotypes homozygous or heterozygous for the Mi gene. The reproduction of three isolates with partial virulence was much greater on tomato genotypes heterozygous for the Mi gene (cultivars Scala, Bermuda, and 7353) than on two homozygous genotypes (F8 inbred lines derived from Scala). The reproduction of a highly virulent isolate on the homozygous and heterozygous genotypes was similar to that on a susceptible cultivar. These results pose questions regarding the nature of partial virulence and indicate a quantitative effect of the Mi gene in relation to such virulence.  相似文献   

17.
Microsatellite markers were transferred and characterized for two Neotropical fig tree species, Ficus citrifolia and Ficus eximia. Our study demonstrated that microsatellite markers developed from different subgenera of Ficus can be transferred to related species. In the present case, 12 of the 15 primer pairs tested (80%) were successfully transferred to both of the above species. Eleven loci were polymorphic when tested across 60 F. citrifolia and 60 F. eximia individuals. For F. citrifolia, there were 4 to 15 alleles per locus, whereas expected heterozygosities ranged from 0.31 to 0.91. In the case of F. eximia, this was 2 to 12 alleles per locus and expected heterozygosities from 0.42 to 0.87.  相似文献   

18.
We report the quantitative trait loci (QTL) mapping of reproductive isolation traits between Ostrinia nubilalis (the European corn borer) and its sibling species O. scapulalis (the Adzuki bean borer), focusing on two traits: mating isolation (mi) and pheromone production (Pher). Four genetic maps were generated from two backcross families, with two maps (one chromosomal map and one linkage map) per backcross. We located 165–323 AFLP markers on these four maps, resulting in the identification of 27–31 linkage groups, depending on the map considered. No-choice mating experiments with the offspring of each backcross led to the detection of at least two QTLs for mi in different linkage groups. QTLs underlying Pher were located in a third linkage group. The Z heterochromosome was identified by a specific marker (Tpi) and did not carry any of these QTLs. Finally, we considered the global divergence between the two sibling species, distortions of segregation throughout the genome, and the location and effect of mi and Pher QTLs in light of the known candidate genes for reproductive isolation within the genus Ostrinia and, more broadly, in phytophagous insects.  相似文献   

19.

Background and Aims

Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments.

Methods

Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200–1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland.

Key Results

Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected.

Conclusions

High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change.  相似文献   

20.
Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives.Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China.Key Results In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180–240 ppm in the late Pliocene, which is consistent with most other previous estimates.Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are unclear, however, and require further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号