首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium is an essential trace element in many life forms due to its occurrence as a selenocysteine (Sec) residue in selenoproteins. The majority of mammalian selenoproteins, however, have no known function. Herein, we performed extensive sequence similarity searches to define and characterize a new protein family, designated Rdx, that includes mammalian selenoproteins SelW, SelV, SelT and SelH, bacterial SelW-like proteins and cysteine-containing proteins of unknown function in all three domains of life. An additional member of this family is a mammalian cysteine-containing protein, designated Rdx12, and its fish selenoprotein orthologue. Rdx proteins are proposed to possess a thioredoxin-like fold and a conserved CxxC or CxxU (U is Sec) motif, suggesting a redox function. We cloned and characterized three mammalian members of this family, which showed distinct expression patterns in mouse tissues and different localization patterns in cells transfected with the corresponding GFP fusion proteins. By analogy to thioredoxin, Rdx proteins can use catalytic cysteine (or Sec) to form transient mixed disulfides with substrate proteins. We employed this property to identify cellular targets of Rdx proteins using affinity columns containing mutant versions of these proteins. Rdx12 was found to interact with glutathione peroxidase 1, whereas 14-3-3 protein was identified as one of the targets of mammalian SelW, suggesting a mechanism for redox regulation of the 14-3-3 family of proteins.  相似文献   

2.
Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with (75)Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.  相似文献   

3.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

4.
UnpEL (also known as Usp4 or Unph) is an oncogenic protein, because its expression with a strong promoter results in the tumorigenic transformation of NIH3T3 cells injected into nude mice. Although the structure of UnpEL is that of a deubiquitinating enzyme, neither its precise function in mammalian cells nor the mechanism of UnpEL-mediated tumorigenesis is known. Here, we show that UnpEL functions as a deubiquitinating enzyme in human HEK293T cells and its isopeptidase activity deconjugates ubiquitin specifically from a UnpEL-interacting protein Ro52. We further show that UnpEL translocates to the cytoplasmic rod-like structures and colocalizes with Ro52 when Ro52 is overexpressed in HEK293 cells. These results suggest that UnpEL colocalizes with the unubiquitinated form of Ro52 to the cytoplasmic rod-like structures, where it keeps Ro52 unubiquitinated. The continuous deubiquitination of Ro52 might be involved in tumorigenesis.  相似文献   

5.
Since inhibitors of sphingosine kinases (SK1, SK2) have been shown to induce p53-mediated cell death, we have further investigated their role in regulating p53, stress activated protein kinases and XBP-1s in HEK293T cells. Treatment of these cells with the sphingosine kinase inhibitor, SKi, which fails to induce apoptosis, promoted the conversion of p53 into two proteins with molecular masses of 63 and 90 kDa, and which was enhanced by over-expression of ubiquitin. The SKi induced conversion of p53 to p63/p90 was also enhanced by siRNA knockdown of SK1, but not SK2 or dihydroceramide desaturase (Degs1), suggesting that SK1 is a negative regulator of this process. In contrast, another sphingosine kinase inhibitor, ABC294640 only very weakly stimulated formation of p63/p90 and induced apoptosis of HEK293T cells. We have previously shown that SKi promotes the polyubiquitination of Degs1, and these forms positively regulate p38 MAPK/JNK pathways to promote HEK293T cell survival/growth. siRNA knockdown of SK1 enhanced the activation of p38 MAPK/JNK pathways in response to SKi, suggesting that SK1 functions to oppose these pro-survival pathways in HEK293T cells. SKi also enhanced the stimulatory effect of the proteasome inhibitor, MG132 on the expression of the pro-survival protein XBP-1s and this was reduced by siRNA knockdown of SK2 and increased by knockdown of p53. These findings suggest that SK1 and SK2 have opposing roles in regulating p53-dependent function in HEK293T cells.  相似文献   

6.
The exact function and trafficking of selenoprotein T (SelT) are still unclear. This study was focused on using bioinformatics analysis as an approach to understanding the structure-function relationship of SelT and the trafficking of SelT between cellular compartments. Blast analysis revealed that SelT is present in mammals, birds, frogs, zebra fish, and green algae. Structural analyses revealed that SelT contains a CxxU motif in a thioredoxin-like fold, suggesting a redox function of SelT. Cysteine (Cys) residues were found in the place of selenocysteine in SelT Cys homologs in insects, roundworms, and plants. The SignalP program recognized signal peptides in both SelT and SelT Cys homologs. Mammalian SelT was predicted to contain an N-terminal signal peptide of 19 amino acid residues, which may be involved in targeting SelT to the endoplasmic reticulum. Finally, SelT may be localized in the plasma membrane in addition to its presence in the Golgi apparatus and the endoplasmic reticulum.  相似文献   

7.
The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified (194)LRMEKLNI(201) as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is the first report of a GFP that contains a functional NES.  相似文献   

8.
Different members of the Na+/Ca2++K+ exchanger (NCKX) family are present in distinct brain regions, suggesting that they may have cell-specific functions. Many neuronal channels and transporters are regulated via phosphorylation. Regulation of the rat brain NCKXs by protein kinases, however, has not been described. Here, we report an increase in NCKX2 activity in response to protein kinase C (PKC) activation. Outward current of NCKX2 heterologously expressed in HEK293 cells was enhanced by beta-phorbol dibutyrate (PDBu), whereas PDBu had little effect on activity of NCKX3 or NCKX4. The PDBu-induced enhancement (PIE) of NCKX2 activity was abolished by PKC inhibitors and significantly reduced when the dominant negative mutant of PKCepsilon (K437R) was overexpressed. Moreover, PDBu accelerated the decay rate of the Ca2+ transient at the calyx of Held, where NCKX is the major Ca2+-clearance mechanism. Intracellular perfusion with alkaline phosphatase completely inhibited PIE. Consistently, beta-phorbol myristate acetate (PMA), but not 4alpha-PMA, induced a 3-fold stimulation of 32P incorporation into NCKX2 expressed in HEK293 cells. To investigate the sites involved, PIE of wild-type NCKX2 was compared with mutant NCKX2 in which the three putative PKC consensus sites were replaced with alanine, either individually or in combination. Double-site mutation involving Thr-476 (T166A/T476A and T476A/S504A) disrupted PIE, whereas single mutation of Thr-166, Thr-476, or Ser-504 or the double mutant T166A/S504A failed to completely prevent PIE. These findings suggest that PKC-mediated activation of NCKX2 is sensitive to mutation of multiple PKC consensus sites via a mechanism that may involve several phosphorylation events.  相似文献   

9.
10.
Selenite is a selenium source for selenoprotein biosynthesis in mammalian cells. Although previous studies have suggested the involvement of glutathione (GSH) and/or thioredoxin reductase in selenite metabolism, intracellular selenite metabolism remains largely unknown. Here, we report that GSH depletion did not affect the amount of selenoprotein in Hepa 1–6 cells, suggesting that GSH does not play a central role in the reduction of selenite in selenoprotein biosynthesis. On the other hand, we found that GSH is involved in the efflux of low-molecular-weight selenium compounds from cells, presumably via the formation of selenodiglutathione. Moreover, selenite inhibited the efflux of a fluorescent bimane-GS conjugate that is mediated by ATP-dependent multidrug-resistant proteins, implying the existence of an active transporter for selenodiglutathione. This is the first report demonstrating that GSH plays a role in selenium excretion from cells by forming a GSH-conjugate, which may contribute to the distribution, detoxification, and homeostasis of selenium in the body.  相似文献   

11.
The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.  相似文献   

12.
The human selenoproteome consists of 25 known selenoproteins, but functions of many of these proteins are not known. Selenoprotein H (SelH) is a recently discovered 14-kDa mammalian protein with no sequence homology to functionally characterized proteins. By sensitive sequence and structure analyses, we identified SelH as a thioredoxin fold-like protein in which a conserved CXXU motif (cysteine separated by two other residues from selenocysteine) corresponds to the CXXC motif in thioredoxins. These data suggest a redox function of SelH. Indeed, a recombinant SelH shows significant glutathione peroxidase activity. In addition, SelH has a conserved RKRK motif in the N-terminal sequence. We cloned wild-type and cysteine mutant forms of SelH either upstream or downstream of green fluorescent protein (GFP) and localized this fusion protein to the nucleus in transfected mammalian cells, whereas mutations in the RKRK motif resulted in the cytosolic protein. Interestingly, the full-length SelH-GFP fusion protein localized specifically to nucleoli, whereas the N-terminal sequence of SelH fused to GFP had a diffuse nucleoplasm location. Northern blot analyses revealed low expression levels of SelH mRNA in various mouse tissues, but it was elevated in the early stages of embryonic development. In addition, SelH mRNA was overexpressed in human prostate cancer LNCaP and mouse lung cancer LCC1 cells. Down-regulation of SelH by RNA interference made LCC1 cells more sensitive to hydrogen peroxide but not to other peroxides tested. Overall, these data establish SelH as a novel nucleolar oxidoreductase and suggest that some functions in this compartment are regulated by redox and dependent on the trace element selenium.  相似文献   

13.
14.
Regulator of G protein signaling 19 (RGS19), also known as Gα-interacting protein (GAIP), is a GTPase activating protein (GAP) for Gαi subunits. Apart from its GAP function, RGS19 has been implicated in growth factor signaling through binding to GAIP-interacting protein C-terminus (GIPC) via its C-terminal PDZ-binding motif. To gain additional insight on its function, we have stably expressed RGS19 in a number of mammalian cell lines and examined its effect on cell proliferation. Interestingly, overexpression of RGS19 stimulated the growth of HEK293, PC12, Caco2, and NIH3T3 cells. This growth promoting effect was not shared by other RGS proteins including RGS4, RGS10 and RGS20. Despite its ability to stimulate cell proliferation, RGS19 failed to induce neoplastic transformation in NIH3T3 cells as determined by focus formation and soft-agar assays, and it did not induce tumor growth in athymic nude mice. Deletion mutants of RGS19 lacking the PDZ-binding motif failed to complex with GIPC and did not exhibit any growth promoting effect. Overexpression of GIPC alone in HEK293 cells stimulated cell proliferation whereas its knockdown in H1299 non-small cell lung carcinomas suppressed cell proliferation. This study demonstrates that RGS19, in addition to acting as a GAP, is able to stimulate cell proliferation in a GIPC-dependent manner.  相似文献   

15.
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in Escherichia coli forms insoluble inclusion bodies that are difficult to denature and refold. The presented results demonstrate the use of a novel HaloTag? technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10-50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1's methyltransferase activity.  相似文献   

16.
17.
The electrogenic cation transporters OCT1 and OCT2 in the basolateral membrane of renal proximal tubules mediate the first step during secretion of organic cations. Previously we demonstrated stimulation and change of selectivity for rat OCT1 (rOCT1) by protein kinase C. Here we investigated the effect of cGMP on cation transport by rOCT1 or human OCT2 (hOCT2) after expression in human embryonic kidney cells (HEK293) or oocytes of Xenopus laevis. In HEK293 cells, uptake was measured by microfluorimetry using the fluorescent cation 4-(4-(dimethyl-amino)styryl)-N-methylpyridinium iodide (ASP + ) as substrate, whereas uptake into Xenopus laevis oocytes was measured with radioactively labelled cations. In addition, ASP +-induced depolarizations of membrane voltages (Vm) were measured in HEK293 cells using the slow whole-cell patch-clamp method. Incubation of rOCT1-expressing HEK293 cells for 10 min with 100 mM 8-Br-cGMP reduced initial ASP + uptake by maximally 78% with an IC50 value of 24 +/- 16 mM. This effect was not abolished by the specific PKG inhibitor KT5823, indicating that a cGMP-dependent kinase is not involved. An inhibition of ASP + uptake by rOCT1 in HEK293 cells was also obtained when the cells were incubated for 10 min with 100 mM cGMP, whereas no effect was obtained when cGMP was given together with ASP +. ASP + (100 mM)-induced depolarizations of Vm were reduced in the presence of 8-Br-cGMP (100 mM) by 44 +/- 11% (n = 6). Since it could be demonstrated that [3H]cGMP is taken up by an endogeneous cyanine863-inhibitable transporter, the effect of cGMP is probably mediated from inside the cell. Uptake measurements with [14C]tetraethylammonium and [3H]2-methyl-4-phenylpyridinium in Xenopus laevis oocytes expressing rOCT1 performed in the absence and presence of 8-Br-cGMP showed that cGMP does not interact directly with the transporter. The data suggest that the inhibition mediated by cGMP observed in HEK293 cells occurs most likely via a mammalian cGMP-binding protein that interacts with OCT1-2 transporters.  相似文献   

18.
Selenium, an essential biological trace element, has been shown to modulate functions of many regulatory proteins involved in signal transduction and to affect a variety of cellular activities including cell growth, survival, and death. The molecular mechanism by which selenium exerts its action on the cellular events, however, remains unclear. In our present study, we observed that selenite suppresses both the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase pathway in 293T cells. In contrast, selenite had little effect on the extracellular signal-regulated kinase pathway. Furthermore, selenite directly inhibited JNK/SAPK activity in vitro but not the p38 activity. The in vitro inhibition of JNK/SAPK by selenite was reversed by the addition of reducing agents such as dithiothreitol and beta-mercaptoethanol. Replacement of cysteine 116 in JNK1 by serine abolished the inhibitory effect of selenite on JNK1 activity both in vitro and in vivo. Selenite also suppressed a c-Jun-dependent luciferase reporter activity stimulated through the JNK signaling pathway. Taken together, our findings strongly suggest that selenite differentially modulates the mammalian mitogen-activated protein kinase pathways and that it can repress the JNK/SAPK signaling pathway by inhibiting JNK/SAPK through a thiol redox mechanism.  相似文献   

19.
Selenoprotein W gene regulation by selenium in L8 cells   总被引:3,自引:0,他引:3  
Q.P. Gu  W. Ream  P.D. Whanger 《Biometals》2002,15(4):411-420
  相似文献   

20.
The metabotropic glutamate receptor mGluR1alpha in membranes isolated both from rat brain and from cell lines transfected with cDNA coding for the receptor migrates as a disulphide-bonded dimer on sodium dodecyl sulphate-polyacrylamide gels. Dimerization of mGluR1alpha takes place in the endoplasmic reticulum because it is not prevented by exposing transfected human embryonic kidney (HEK) 293 cells to the drug brefeldin A, a drug that prevents egress of proteins from the endoplasmic reticulum. Dimerization was also not dependent on protein glycosylation as it was not prevented by treatment of the cells with tunicamycin. Using a mammalian expression vector containing the N-terminal domain of mGluR1alpha, truncated just before the first transmembrane domain (NT-mGluR1alpha), we show that the N-terminal domain is secreted as a soluble disulphide-bonded dimeric protein. In addition, the truncated N-terminal domain can form heterodimers with mGluR1alpha when both proteins are cotransfected into HEK 293 cells. However, mGluR1alpha and its splice variant mGluR1beta did not form heterodimers in doubly transfected HEK 293 cells. These results show that although the N-terminal domain of mGluR1alpha is sufficient for dimer formation, other domains in the molecule must regulate the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号