首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
    
《Journal of lipid research》2016,57(12):2115-2129
  相似文献   

2.
    
Familial hypercholesterolemia is a genetic disorder that results from various gene mutations, primarily within the LDL receptor (LDLR). Approximately 50% of the LDLR mutations are defined as class 2 mutations, with the mutant proteins partially or entirely retained in the endoplasmic reticulum. To determine the degradation pathway of the LDLR class 2 mutants, we examined the effects of inhibition of several potential pathways on the levels of the wild-type LDLR and its four representative class 2 mutants (S156L, C176Y, E207K, and C646Y) stably expressed in Chinese hamster ovary (CHO) cells. We found that proteasome inhibitors MG132 and lactacystin blocked the degradation of the LDLR mutants, but not that of the wild-type LDLR. Treatment of CHO cells with these proteasome inhibitors led to a significant accumulation of the mutants at steady state. Furthermore, cell surface levels of the LDLR mutants were significantly increased upon inhibition of the proteasome degradation pathway. In contrast to the proteasome inhibitors, inhibitors of trypsin-like proteases, chymotrypsin-like proteases, and lysosomal pathway inhibitors did not affect the levels of the LDLR mutants. Taken together, these data demonstrate that the proteasome is the principal degradation pathway for LDLR class 2 mutants.  相似文献   

3.
    
  相似文献   

4.
    
Subjects with increased cholesterol absorption might benefit more from statin therapy combined with a cholesterol absorption inhibitor. We assessed whether baseline cholesterol absorption markers were associated with response to ezetimibe/simvastatin therapy, in terms of LDL-cholesterol (LDL-C) lowering and cholesterol absorption inhibition, in patients with familial hypercholesterolemia (FH). In a posthoc analysis of the two-year ENHANCE trial, we assessed baseline cholesterol-adjusted campesterol (campesterol/TC) and sitosterol/TC ratios in 591 FH patients. Associations with LDL-C changes and changes in cholesterol absorption markers were evaluated by multiple regression analysis. No association was observed between baseline markers of cholesterol absorption and the extent of LDL-C response to ezetimibe/simvastatin therapy (β = 0.020, P = 0.587 for campesterol/TC and β<0.001, P = 0.992 for sitosterol/TC). Ezetimibe/simvastatin treatment reduced campesterol levels by 68% and sitosterol levels by 62%; reductions were most pronounced in subjects with the highest cholesterol absorption markers at baseline, the so-called high absorbers (P < 0.001). Baseline cholesterol absorption status does not determine LDL-C lowering response to ezetimibe/simvastatin therapy in FH, despite more pronounced cholesterol absorption inhibition in high absorbers. Hence, these data do not support the use of baseline absorption markers as a tool to determine optimal cholesterol lowering strategy in FH patients. However, due to the exploratory nature of any posthoc analysis, these results warrant further prospective evaluation in different populations.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The first in this series of historical reviews dealt with the pioneering animal model work of Anitschkow, implicating blood cholesterol in the pathogenesis of atherosclerosis, and the pivotally important work of Gofman, providing evidence that lipoprotein-bound cholesterol was a major factor in the human disease. This second installment reviews the early lines of evidence linking hypercholesterolemia in humans to the progression of atherosclerosis and the risk of coronary heart disease. The argument is made that by 1970, the evidence was already strong enough to justify intervention to lower blood cholesterol levels if all the available lines of evidence had been taken into account. Yet, it would be almost two decades before lowering blood cholesterol levels became a national public health goal. Some of the reasons the \"cholesterol controversy\" continued in the face of powerful evidence supporting intervention are discussed.  相似文献   

6.
家族性高胆固醇血症样表型遗传异质性的分子基础   总被引:11,自引:0,他引:11  
王绿娅  蔺洁  刘舒  陈保生 《遗传学报》2005,32(7):770-777
家族性高胆固醇血症(FH)是由于低密度脂蛋白受体(LDL—R)基因突变,致使细胞表面LDL-R蛋白功能缺陷,导致血浆低密度脂蛋白(LDL)大幅度增高,并可导致早发冠心病。“FH”已经成为携带LDL-R基因突变患者的同意词,但日益增多的研究证实,其他6种基因突变也可通过不同机制导致FH样表型。这些致病基因的发现.促进胆固醇代谢的研究进入新领域,有助于深入探讨胆固醇代谢的调节机制,并将为FH样表型的诊断和治疗提供新的理论依据。文章就有关FH样表型遗传异质性的分子基础研究的近况作一简要综述.以引起人们的关注。  相似文献   

7.
    
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 μM, P = 0.003, and 1.23 ± 0.10 μM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 μM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.  相似文献   

8.
9.
High-density lipoproteins cholesterol (HDL-C) level, a strong coronary artery disease (CAD) clinical biomarker, shows significant interindividual variability. However, the molecular mechanisms involved remain mostly unknown. ATP-binding cassette A1 (ABCA1) catalyzes the cholesterol transfer from peripheral cells to nascent HDL particles. Recently, a differentially methylation region was identified in ABCA1 gene promoter locus, near the first exon. Therefore, we hypothesized that DNA methylation changes at ABCA1 gene locus is one of the molecular mechanisms involved in HDL-C interindividual variability. The study was conducted in familial hypercholesterolemia (FH), a monogenic disorder associated with a high risk of CAD . Ninety-seven FH patients (all p.W66G for the LDLR gene mutation and not under lipid-lowering treatment) were recruited and finely phenotyped for DNA methylation analyses at ABCA1 gene locus. ABCA1 DNA methylation levels were found negatively correlated with circulating HDL-C (r = -0.20; p = 0.05), HDL2-phospholipid levels (r = -0.43; p = 0.04), and with a trend for association with HDL peak particle size (r = -0.38; p = 0.08). ABCA1 DNA methylation levels were also found associated with prior history of CAD (CAD = 40.2% vs. without CAD = 34.3%; p = 0.003). These results suggest that epigenetic changes within the ABCA1 gene promoter contribute to the interindividual variability in plasma HDL-C concentrations and are associated with CAD expression. These findings could change our understanding of the molecular mechanisms involved in the pathophysiological processes leading to CAD.  相似文献   

10.
    
Elevated nonfasting TG-rich lipoprotein levels are a risk factor for CVD. To further evaluate the relevance of LDL-receptor (LDLr) pathway and heparan sulfate proteoglycans (HSPGs) in TG homeostasis, we analyzed fasting and postprandial TG levels in mice bearing combined heterozygous mutations in both Exostosin (Ext) 1 and Ldlr, in subjects with hereditary multiple exostosis (HME) due to a heterozygous loss-of-function mutation in EXT1 or EXT2 (N = 13), and in patients with heterozygous mutations in LDLR [familial hypercholesterolemia (FH)] and SNPs in major HSPG-related genes (n = 22). Mice bearing a homozygous mutation in hepatic Ext1 exhibited elevated plasma TGs similar to mice lacking other key enzymes involved in HSPG assembly. Compound heterozygous mice lacking Ldlr and Ext1 showed synergy on plasma TG accumulation and postprandial clearance. In human subjects, a trend was observed in HME patients toward reduced postprandial TG clearance with a concomitant reduction in chylomicron clearance [area under the curve (AUC)-retinyl ester (RE) HME, 844 ± 127 vs. controls, 646 ± 119 nM/h, P = 0.09]. Moreover, in FH subjects with a high HSPG gene score, retinyl palmitate excursions were higher (AUC-RE, 2,377 ± 293 vs. 1,565 ± 181 nM/h, P < 0.05). Incremental AUC-apoB48 was similar between the groups. In conclusion, the data are supportive for a minor yet additive role of HSPG in human postprandial TG clearance, and further studies are warranted.  相似文献   

11.
    
High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects' serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (-69%, -80% and -74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (-27% and -16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation.  相似文献   

12.
Novel missense mutation G571E (c.1775 G > A), novel silent mutation H229H (c.750 C > T), and nonsense mutation C74X (c.285 C > A), earlier described in Japan but unknown in Russia, were identified in the low-density lipoprotein (LDL) receptor gene in St. Petersburg familial hypercholesterolemia patients. The analyzed group of patients was shown to be polymorphic in many positions of the LDL receptor gene, namely, c.1171 G/A, c.1773 T/C, c.2177 C/T, and c.2231 G/A.  相似文献   

13.
    
Objective: To investigate the role of abdominal and body obesity on the prevalence of hyperlipidemia, in particular, hypertriglyceridemia, hypercholesterolemia, and high apolipoprotein B levels, in familial combined hyperlipidemia (FCHL) relatives and their spouses. Research Methods and Procedures: In FCHL relatives (n = 618) and spouses (n = 297), prevalence data of hyperlipidemia and high apolipoprotein B levels and their age and gender‐corrected odds ratios (ORs) were calculated for sex‐adjusted categories of waist‐to‐hip ratio (WHR), waist circumference, and BMI. Results: Increments of BMI, waist circumference, and WHR increased the frequency of hyperlipidemia. In the whole study population (relatives and spouses combined), frequency of hypertriglyceridemia showed a significant interaction only between WHR categories and FCHL. This was studied further after stratification of relatives by multivariable logistic regression analyses corrected for age and gender. Predominant expression of hypertriglyceridemia was observed with higher categories of WHR in FCHL relatives (prevalence up to 57.6%, OR 8.48 in highest vs. lowest WHR category, p < 0.001) but not in spouses (up to 32.9%, OR 1.05 in highest vs. lowest WHR category, not significant). Discussion: Both in spouses and FCHL relatives, increments in BMI and waist circumference increased the prevalence of hyperlipidemia. Specifically, in FCHL relatives, WHR was the most informative determinant of the expression of hyperlipidemia, in particular, hypertriglyceridemia. The data indicate that FCHL develops against a background of abdominal obesity.  相似文献   

14.
    
Tva is the cellular receptor for subgroup A Rous sarcoma virus (RSV-A), and the viral receptor function is solely determined by a 40-residue motif called the LDL-A module of Tva. In this report, an integral approach of molecular, biochemical, and biophysical techniques was used to examine the role of a well-conserved tryptophan of the LDL-A module of Tva in protein folding and ligand binding. We show that substitution of tryptophan by glycine adversely affected the correct folding of the LDL-A module of Tva, with only a portion giving a calcium-binding conformation. Furthermore, we show that the misfolded LDL-A conformations of Tva could not efficiently bind to its ligand. These results indicate that this conserved tryptophan in the LDL-A module of Tva plays an important role in correct protein folding and ligand recognition. Furthermore, these results suggest that the familial hypercholesterolemia (FH) French Canadian-4 mutation is likely caused by protein misfolding of low-density lipoprotein receptor, thus explaining the defect for this class of FH.  相似文献   

15.
The low-density lipoprotein receptor (LDLR) mediates cholesterol homeostasis through endocytosis of lipoprotein particles, particularly low-density lipoproteins (LDLs). Normally, the lipoprotein particles are released in the endosomes and the receptors recycle to the cell surface. Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the gene encoding the LDLR. These mutations are divided into five functional classes where Class 5 mutations encode receptors that suffer from ligand-induced degradation and recycling deficiency. The aim of this study was to investigate whether it is possible to prevent the fast ligand-induced degradation of Class 5-mutant LDLR and to restore its ability to recycle to the cell surface. E387K is a naturally occurring Class 5 mutation found in FH patients, and in the present study, we used Chinese hamster ovary cells transfected with an E387K-mutant LDLR. Abrogation of endosomal acidification by adding bafdomycin A1 or addition of the irreversible serine protease inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and 3,4-dichloroisocoumarin (DCI), prevented the degradation of the E387K-mutant LDLR. However, the undegraded receptor did not recycle to the cell surface in the presence of LDL. Unexpectedly, AEBSF caused aggregation of early endosome antigen-1positive endosomes and the intracellular trapped LDLR co-localized with these aggregated early endosomes.  相似文献   

16.
中国人群家族性高胆固醇血症LDLR基因突变研究进展   总被引:3,自引:0,他引:3  
Dai YF  Sun LY  Zhang XB  Wang LY 《遗传》2011,33(1):1-8
家族性高胆固醇血症(Familial hypercholesterolemia,FH)主要是由于低密度脂蛋白受体(Low-density lipoprotein receptor,LDLR)基因突变导致的单基因显性遗传性疾病。FH患者LDLR基因突变导致细胞膜表面LDLR减少或缺如,机体代谢胆固醇能力降低,血浆胆固醇增高并沉积在不同的组织和器官,常伴有全身黄色瘤和早发冠心病,因此FH也是最常见的严重代谢性疾病。世界范围内对LDLR基因突变的报道总共有1741种,经整理我国目前报道的140例FH指示病例,包括108种LDLR基因突变类型。文章对已报道的中国FH患者LDLR基因突变特点进行系统分析和综述,旨在为FH诊断治疗提供参考依据。  相似文献   

17.
18.
19.
丁毅  杜芬  喻红 《生物资源》2020,42(3):335-341
本研究通过生物信息学方法分析家族性高胆固醇血症患者外周血单核细胞差异表达基因、HDL载体差异表达miRNA及其生物学功能,研究差异HDL-miRNA与单核细胞差异基因的相关性,探讨HDL-miRNA调控外周血单核细胞功能机制,寻找动脉粥样硬化防治新靶点。运用R语言分析GEO数据库共享平台家族性高胆固醇血症外周血单核细胞基因及HDL-miRNA探针芯片得到差异基因及差异miRNA,利用miRwalk2. 0预测miRNA靶基因,并利用STRING进行蛋白互作分析,构建差异miRNA与差异基因之间的调控网络。运用GO及KEGG分析研究基因功能。利用GEO数据(GSE6054)筛选出834个差异表达基因,利用GEO数据(GSE25108)筛选出HDL上差异miRNA28个。交叉匹配得到由19个差异miRNA和56个差异基因组配对的74对miRNA-靶基因。GO富集分析56个差异基因主要富集于肾上腺素受体信号等分子功能。KEGG分析56个差异基因主要富集于造血谱系通路上。家族性高胆固醇血症差异HDL-miRNA与外周血单核细胞差异mRNA具有相关性,HDL-miRNA有通过调控血单核细胞功能的可能性,可能参与高胆固醇血症导致动脉粥样硬化过程。  相似文献   

20.
Studies comparing the metabolism of low density lipoprotein (LDL) in normal cells and in cells cultured from patients with homozygous familial hypercholesterolemia have disclosed the existence of a receptor for plasma LDL. This receptor has been identified on the surface of human fibroblasts, lymphocytes, and aortic smooth muscle cells. An extension of these studies to cell strains derived from patients with other single gene defects in cholesterol metabolism has provided additional insight into the normal mechanisms by which cells regulate their cholesterol content and how alterations in these genetic control mechanisms may predispose to atherosclerosis in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号