首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrating cover crops (CC) in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i) CC growth and N content; (ii) the chemical composition of residues; (iii) soil inorganic N and potentially mineralizable N; and (iv) soil water content. Treatments were fallow and a CC mixture of barley (Hordeum vulgare L.) and vetch (Vicia sativa L.) sown in October and killed on two different dates in spring. Above-ground biomass and chemical composition of CC were determined at harvest, and ground cover was monitored based on digital image analysis. Soil mineral N was determined before sowing and after killing the CC, and potentially mineralizable N was measured by aerobic incubation at the end of the experiment. Soil water content was monitored daily to a depth of 1.1 m using capacitance sensors. Under the present conditions of high N availability, delaying kill date increased barley above-ground biomass and N uptake from deep soil layers; little differences were observed in vetch. Postponing kill date increased the C/N ratio and the fiber content of plant residues. Ground cover reached >80% by the first kill date (∼1250°C days). Kill date was a means to control soil inorganic N by balancing the N retained in the residue and soil, and showed promise for mitigating N losses. The early kill date decreased the risk of water and N pre-emptive competition by reducing soil depletion, preserving rain harvested between kill dates and allowing more time for N release in spring. The soil potentially mineralizable N was enhanced by the CC and kill date delay. Therefore kill date is a crucial management variable for maximizing the CC benefits in agricultural systems.  相似文献   

2.
We investigated belowground responses of Nothofagus alpina seedlings to post-fire conditions during natural regeneration after a wildfire in Chile, focusing on mycorrhizal community and root architecture. The complete root systems of 2-year-old N. alpina seedlings were extracted from a post-fire site with natural regeneration and compared to roots of seedlings from undisturbed forest nearby. Mycorrhizal morphotype richness was determined in each seedling. Morphometric parameters of tertiary root structure and dry biomass of whole root systems were determined in 5 cm vertical intervals and in four lateral root classes. With 43.5% of colonized vital mycorrhizal root tips, the Basidiomycete Descolea antarctica was the most abundant fungal symbiont on post-fire seedlings. Tertiary root morphology of these seedlings was distinct from control plants and characterized by a deep-reaching tap root with rather evenly distributed lateral branches whereas seedlings from the undisturbed site had shallower root systems with most lateral roots concentrated in the upper soil layers. Post-fire seedlings had more mycorrhizal rootlets and mycorrhiza-bearing third order lateral roots than control plants which was expressed in a 34% higher total root number but only a 10% higher total root biomass, although both values were not statistically significant. A major part of these fine roots in seedlings from burnt forest was found in deeper soil horizons, compared to the seedlings from undisturbed forest. According to our results, post-fire conditions clearly favour Descolea antarctica as an early ectomycorrhizal colonizer of Nothofagus seedlings at the studied site. As no significant changes in soil chemistry could be observed at the burnt site, the deep-reaching tertiary root architecture of these seedlings may be interpreted as a response to other abiotic factors like reduced moisture in surface soil.  相似文献   

3.
有关生物量碳随林分生长变化研究较多,而相关土壤有机碳储量随林分生长变化研究较少且结论争议较大。通过对二者随林分生长变化差异的比较,旨在探讨是否可以通过简单林分生长指标来判断土壤有机碳的变化规律。对兴安落叶松人工林分布区内139个样地的生物量与土壤碳动态研究结果表明:(1)林龄是指示生物量碳累积的可靠参数。兴安落叶松个体大小(胸径、树高和单株生物量)随着林龄的增大不断增加,相关性显著(P<0.001),而林分生物量密度随林龄的增大呈线性上升(R2=0.2-0.6,P<0.001)。(2)地表凋落物量与林龄表现显著的二次曲线相关,前37a上升而后开始下降。地表凋落物量与林木大小、生物量密度均相关显著(R2=0.14-0.82,P<0.001),但与树高相关性最高,显示树高变化对于评价地表枯落物生物量可能更有效。(3)林龄、林木大小和林分生物量密度均与土壤不同层碳存在相类似的相关关系。深层土壤有机碳(>40cm)与林龄显著负相关(P<0.05),表层土壤有机碳有增加趋势 (P>0.05),这使得0-40 cm与40-80 cm土壤有机碳储量比值随林龄增加而显著增加(P<0.01);与此类似,林木平均大小也与深层土壤有机碳显著负相关(P<0.05),而表层与深层有机碳储量比值随林木大小(胸径与树高)的增大也呈显著上升趋势(P<0.05);但同时考虑林木个体大小和林分密度的林分生物量密度(地上和地下),并没有发现明显的显著相关关系。这些结果说明,评价土壤有机碳变化的指标中,林龄、树高和胸径可能更优于较为复杂的生物量密度等指标。考虑到深层土壤较表层具有更长期的稳定性,这种表层与深层土壤有机碳比值的增加,意味着土壤碳有向表层积聚而深层减少的趋势,这可能使得土壤有机碳更容易受外界环境变化(如火灾等)的影响。落叶松人工林群落碳储量随林龄增加的变化规律明显,除了占主要部分的生物量碳之外,土壤碳累积值得关注,这一发现对于以固碳增汇为目标的碳汇林建设具有指导意义。  相似文献   

4.
五节芒对重金属污染土壤微生物生物量和呼吸的影响   总被引:6,自引:0,他引:6  
选择3个五节芒在重金属污染地的定居点作为研究样地,其中两个为Pb/Zn矿尾矿砂堆积地(W:黄岩铅锌尾矿;Y:三门铅锌尾矿),一个为冶炼厂附近污染农田(N),分别测定其根围与根际土壤微生物基础呼吸、微生物量碳、微生物量氮、土壤理化特性和土壤重金属含量.结果表明:根际土壤微生物基础呼吸和微生物量氮均显著地高于根围土壤(P<0.05),除了N样地外,微生物量碳在根围与根际之间差异不显著(P>0.05).根际土壤有机碳、总氮(Y样地除外)和离子交换量(N样地除外)低于根围土壤.根际重金属(Pb、Zn、Cu、Cd)总量与DTPA(二乙三胺五乙酸)可提取量普遍低于根围土壤.冗余分析(RDA)表明,根围和根际土壤微生物与土壤理化特性呈不同程度的正相关,而与土壤重金属含量呈现不同程度的负相关.主分量及回归分析同样证明土壤微生物总体变化与土壤理化特性呈正相关(根围R2=0.653;根际R2=0.690),而与重金属含量呈负相关(根围R2=0.610;根际R2=0.662).  相似文献   

5.
The practice of harvesting forest residues is rapidly increasing due to rising demand for renewable energy. However, major concerns have been raised about the sustainability of this practice and its net impact on long term soil ability to support forest productivity, particularly through second and subsequent rotations. In this study, soil chemical properties such as acidity, total N and C, available NO3–N and NH4–N and exchangeable cations were measured in all horizons in peaty gleys soils under one of the oldest experiments in Europe—a 28-year-old second rotation stand of Sitka spruce (Picea sitchensis), in Kielder forest, UK. Treatments included Whole Tree Harvesting (WTH—of all above ground biomass), Conventional stem-only harvesting (CH) of the first rotation crop, and repeated Fertilisation (FE) after the planting of the second rotation forest. This study demonstrates the soil changes underpinning the reduced second rotation tree productivity on these acidic upland sites under WTH, a further 18 years after the investigation by Proe and Dutch (1994). Overall, WTH increased soil acidity significantly (p < 0.05) and reduced soil base saturation whilst FE reduced soil acidity (p < 0.05) and increased soil base saturation as compared to CH. Soil moisture was significantly higher (p < 0.01) under WTH compared to CH and FE plots. There was no evidence that WTH decreased soil organic carbon (SOC) and soil nitrogen (N), but to the contrary there were significantly (p < 0.01) higher concentrations and stocks of total C and N in the WTH soils compared with CH and FE. The depletion of SOC and N in CH and FE plots was attributed to much higher soil mineralisation rates associated with the brash and fertilisation as compared to the WTH plots, where significantly less soil available NO3–N (p < 0.01) was found. In the long term WTH on peaty gley soils appears positive for soil C and N storage. However, WTH had a long term negative impact on soil and tree nutrition of K+ and P, which are currently at deficient levels, but has had a stabilising effect on tree N nutrition as measured in twigs and needles. These results suggest that whilst WTH lead to a reduction in aboveground tree biomass compared to conventional harvest, these practices on selected soil types and certain sites may be beneficial for soil C and N sequestration. The overall findings of this study imply that cost benefit analyses for each site should be carried out before decisions are made on the appropriate type of forest operations (harvesting and replanting), considering both geology and soils in order to serve both environmental benefits, long term sustainability and the available biomass production for timber and biofuel.  相似文献   

6.
We used both stepwise and quantile regression to determine the sources of environmental variation that explained the observed inter-annual variation in end-of-season freshwater floating marsh aboveground biomass over an 18-year period. The vegetation at our study site had high species diversity with an average of 20 species recorded from 10 0.25 m−2 plots. However, Panicum hemitomon was clearly the dominant contributing 74% of the total biomass. Only three other species (Solidago sempervirens, Vigna luteola, and Thelypteris palustris) were so common that they were sampled in all years. We expected that the most important factors controlling interannual variation in aboveground biomass are temperature and nitrogen availability. We also expected that nitrogen availability to the plants is affected by water movement through and under the mat driven by precipitation (lower N), evaporation (transportation of higher N waters to roots), and local runoff (higher N). Stepwise regression analysis indicated that P. hemitomon average biomass was negatively related to average water level and positively related to maximum water level and had a curvilinear response with TKN. Using quantile regression the best fit for P. hemitomon maximum-biomass with two parameters was obtained using hot days (positive relationship) and maximum water level (negative relationship). Both analytical methods showed maximum water level (negative relationship) and cold front passage (positive relationship) to be the environmental parameters that best explained interannual variation in S. sempervirens biomass. V. luteola biomass was positively related to temperature. Stepwise regression added chloride concentration as an additional positive parameter explaining V. luteola biomass, while quantile regression identified nitrogen as an important positive parameter. Both analytical methods identified pH, TKN, and water level as environmental parameters that were negatively correlated with T. palustris biomass. The overall negative effect of water level on all species was unexpected in this floating mat system. We initially assumed that higher water levels were due to higher runoff which should have a positive effect on biomass. However, higher water levels may also be related to a higher retention time in this fresh-water tidal system, which decreases water exchange and nutrient replenishment.  相似文献   

7.
Legume-based cropping systems have the potential to internally regulate N cycling due to the suppressive effect of soil N availability on biological nitrogen fixation. We used a gradient of endogenous soil N levels resulting from different management legacies and soil textures to investigate the effects of soil organic matter dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 fixation was estimated on 13 grain farm fields in central New York State by the 15N natural abundance method using a non-nodulating soybean reference. A range of soil N fractions were measured to span the continuum from labile to more recalcitrant N pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in aboveground biomass ranged from 40 to 224 kg N ha?1. Soil N pools were consistently inversely correlated with % N from fixation and the correlation was statistically significant for inorganic N and occluded particulate organic matter N. However, we also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating isoline increased as soil N decreased, suggesting that N2 fixation increased soil N scavenging in low fertility fields. We found weak evidence for internal regulation of N2 fixation, because the inhibitory effects of soil N availability were secondary to the environmental and site characteristics, such as soil texture and corresponding soil characteristics that vary with texture, which affected soybean biomass, total N2 fixation, and net N balance.  相似文献   

8.
高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征   总被引:2,自引:0,他引:2  
运用历史资料与实地调查相结合的方法,以多元数量统计为手段确定采样地点,以空间尺度代替时间尺度,确定演替系列,以生态化学计量学为基础探讨了高寒矮嵩草草甸退化演替系列氮(N)磷(P)含量及化学计量学特征,发现:1)高寒矮嵩草草甸土壤全量N、P含量随退化演替程度的加深而呈倒"V"字形变化趋势,速效N、P含量随退化程度的加深呈降低趋势,但土壤草甸全量及速效N/P化学计量学特征则呈现降低趋势;2)地上植物N/P化学计量学特征在整个退化演替过程没有明显的差异。说明高寒矮嵩草群落退化改变了土壤中全量及速效N、P的积累和分解速率,打破了土壤系统养分平衡模式,但并没有明显改变植物地上部分整体的N/P化学计量学特征,因此在退化演替过程中植物N/P比为草地退化诊断的惰性指标;土壤N/P化学计量学特征变化同草地退化演替过程具有较好的同步性,其对草地退化演替的敏感性较高,有可能成为未来草地退化诊断的生态指示指标。  相似文献   

9.

Background

The effects of current anthropogenic influences on eelgrass (Zostera marina) meadows are noticeable. Eelgrass ecological services grant important benefits for mankind. Preservation of eelgrass meadows include several transplantation methods. Evaluation of establishing success relies on the estimation of standing stock and productivity. Average leaf biomass in shoots is a fundamental component of standing stock. Existing methods of leaf biomass measurement are destructive and time consuming. These assessments could alter shoot density in developing transplants. Allometric methods offer convenient indirect assessments of individual leaf biomass. Aggregation of single leaf projections produce surrogates for average leaf biomass in shoots. Involved parameters are time invariant, then derived proxies yield simplified nondestructive approximations. On spite of time invariance local factors induce relative variability of parameter estimates. This influences accuracy of surrogates. And factors like analysis method, sample size and data quality also impact precision. Besides, scaling projections are sensitive to parameter fluctuation. Thus the suitability of the addressed allometric approximations requires clarification.

Results

The considered proxies produced accurate indirect assessments of observed values. Only parameter estimates fitted from raw data using nonlinear regression, produced robust approximations. Data quality influenced sensitivity and sample size for an optimal precision.

Conclusions

Allometric surrogates of average leaf biomass in eelgrass shoots offer convenient nondestructive assessments. But analysis method and sample size can influence accuracy in a direct manner. Standardized routines for data quality are crucial on granting cost-effectiveness of the method.
  相似文献   

10.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

11.
Difficulty in quantifying rates of biological N fixation (BNF), especially over long time scales, remains a major impediment to defining N budgets in many ecosystems. To estimate N additions from BNF, we applied a tree-scale N mass balance approach to a well-characterized chronosequence of woody legume (Prosopis glandulosa) encroachment into subtropical grasslands. We defined spatially discrete single Prosopis clusters (aged 28–99 years), and for each calculated BNF as the residual of: soil N (0–30 cm), above- and below-ground biomass N, wet and dry atmospheric N deposition, N trace gas and N2 loss, leaching loss, and baseline grassland soil N at time of establishment. Contemporary BNF for upland savanna woodland was estimated at 10.9 ± 1.8 kg N ha?1 y?1, equal to a total of 249 ± 60 kg N ha?1 over about 130 years of encroachment at the site. Though these BNF values are lower than previous estimates for P. glandulosa, this likely reflects lower plant density as well as low water availability at this site. Uncertainty in soil and biomass parameters affected BNF estimates by 6–11%, with additional sensitivity of up to 18% to uncertainty in other scaling parameters. Differential N deposition (higher rates of dry N deposition to Prosopis canopies versus open grasslands) did not explain N accrual beneath trees; iterations that represented this scenario reduced estimated BNF estimates by a maximum of 1.5 kg N ha?1 y?1. We conclude that in this relatively well-constrained system, small-scale mass balance provides a reasonable method of estimating BNF and could provide an opportunity to cross-calibrate alternative estimation approaches.  相似文献   

12.
We examined arbuscular mycorrhizal (AM) fungi colonizing the roots of Stipa krylovii, a grass species dominating the grasslands of the steppe zone in Hustai and Uvurkhangai in Mongolia. The AM fungal communities of the collected S. krylovii roots were examined by molecular analysis based on the partial sequences of a small subunit of ribosomal RNA gene as well as AM fungal colonization rates. Almost all AM fungi detected were in Glomus-group A, and were divided into 10 phylotypes. Among them, one phylotype forming a clade with G. intraradices and G. irregulare was the most dominant. Furthermore, it was also found that most of the phylotypes include AM fungi previously detected in high altitude regions in the Eurasian Continent. Significant correlations were found among soil total N, total plant biomass and AM fungal colonization ratio, which suggested that higher plant biomass may be required for the proliferation of AM fungi in the environment. Meanwhile, redundancy analysis on AM fungal distribution and environmental variables suggested that the effect of plant biomass and most soil chemical properties on the AM fungal communities were not significant.  相似文献   

13.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

14.
Q Deng  D Hui  D Zhang  G Zhou  J Liu  S Liu  G Chu  J Li 《PloS one》2012,7(7):e41493

Background

The aim of this study was to determine response patterns and mechanisms of soil respiration to precipitation increases in subtropical regions.

Methodology/Principal Findings

Field plots in three typical forests [i.e. pine forest (PF), broadleaf forest (BF), and pine and broadleaf mixed forest (MF)] in subtropical China were exposed under either Double Precipitation (DP) treatment or Ambient Precipitation (AP). Soil respiration, soil temperature, soil moisture, soil microbial biomass and fine root biomass were measured over three years. We tested whether precipitation treatments influenced the relationship of soil respiration rate (R) with soil temperature (T) and soil moisture (M) using R = (a+cM)exp(bT), where a is a parameter related to basal soil respiration; b and c are parameters related to the soil temperature and moisture sensitivities of soil respiration, respectively. We found that the DP treatment only slightly increased mean annual soil respiration in the PF (15.4%) and did not significantly change soil respiration in the MF and the BF. In the BF, the increase in soil respiration was related to the enhancements of both soil fine root biomass and microbial biomass. The DP treatment did not change model parameters, but increased soil moisture, resulting in a slight increase in soil respiration. In the MF and the BF, the DP treatment decreased soil temperature sensitivity b but increased basal soil respiration a, resulting in no significant change in soil respiration.

Conclusion/Significance

Our results indicate that precipitation increasing in subtropical regions in China may have limited effects on soil respiration.  相似文献   

15.
To investigate whether arbuscular mycorrhizal fungi (AMF) – abundant in a phosphate-polluted but nitrogen-poor field site – improve plant N nutrition, we carried out a two-factorial experiment, including N fertilization and fungicide treatment. Percentage of root length colonized (% RLC) by AMF and tissue element concentrations were determined for four resident plant species. Furthermore, soil nutrient levels and N effects on aboveground biomass of individual species were measured. Nitrogen fertilization lowered % RLC by AMF of Artemisia vulgaris L., Picris hieracioides L. and Poa compressa L., but not of Bromus japonicus Thunb. This – together with positive N addition effects on N status, N:P-ratio and aboveground biomass of most species – suggested that plants are mycorrhizal because of N deficiency. Fungicide treatment, which reduced % RLC in all species, resulted in lower N concentrations in A. vulgaris and P. hieracioides, a higher N concentration in P. compressa, and did not consistently affect N status of B. japonicus. Evidently, AMF had an influence on the N nutrition of plants in this P-rich soil; however – potentially due to differences in their mycorrhizal responsiveness – not all species seemed to benefit from a mycorrhiza-mediated N uptake and accordingly, N distribution.  相似文献   

16.
《Ecological Indicators》2007,7(2):277-289
Eutrophication in subtropical wetland ecosystems can lead to extensive displacements of vegetative communities and as a result changes in overall environmental conditions (loss of indigenous habitat, substrate quality, etc.). This has generated a demand for a set of sensitive indicator(s) that prelude these structural changes. The functional response of bacterial communities may indicate the effect and extent of the impact on the overall system. The effects of nutrient enrichment on the microbial community and its ecophysiology were measured in a subtropical marsh (Water Conservation Area 2a) in the northern Everglades, USA. We investigated the microbially mediated organic matter decomposition processes and nutrient cycling in three areas of the marsh, a nutrient enriched site, an intermediate site and a unimpacted (oligotrophic) site. We chose measures associated to the hydrolytic enzyme activities of alkaline phosphatase, β-glucosidase and aminopeptidase. We also monitored microbial biomass carbon (C), nitrogen (N) and phosphorus (P) and the associated elemental turnover rates (C, N and P). We found a significant (α = 0.05) spike in microbial biomass C, N, and P in the intermediate site. The elemental turnover rates (C, N and P) where significantly higher in the impacted and intermediate site when compared to the unimpacted site. The enzymatic profiles at the unimpacted site illustrate a system regulated for optimal use of P. In the intermediate zone between the overall P-limited and P-impacted areas, the nutrient inputs alleviates the stress imposed by the P-limitation. Microbial biomass increased dramatically without a decrease in the overall microbial metabolic efficiency. The metabolic coefficients (particularly q-Potentially Mineralizable P – qPMP and qCO2) indicated that after the disturbance, the impacted areas in the Everglades are characterized by relatively open, inefficient nutrient cycles. The nonlinear shifts (threshold behavior) in microbial parameters indicate that microbial indicators function effectively as early warning signals.  相似文献   

17.
The responses of aboveground parts of the forest to changes in environmental factors and stand age is well studied, but the same is not true for the belowground parts of the forest. Two plantation black locust (Robinia pseudoacacia L.) forest sites were taken in the Loess Plateau of China, one in the drier, infertile, more sandy area of the middle Loess Plateau, and another in the wetter, fertile, more clay-filled area of the southern Loess Plateau. At each site, both a younger (8-year-old) plantation stand and an older (30-year-old) plantation stand were included to study the effects of soil physicochemical properties and stand age on the fine root (<2?mm) biomass and vertical distribution of black locust forests. Root samples were taken with soil cores to a depth of 100?cm. The fine root biomass decreased from the middle site to the southern site for both stand ages, as expected, and the decrease could be due to a higher fine root N concentration associated with a higher fine root turnover rate at the southern site. There was a similar rooting pattern, though not deeper, in the drier, sandy site as predicted based on soil water infiltration and evaporation demands. The different effects of stand characters (e.g., tree density, tree height) on the fine root distribution as compared with the environmental properties may contribute partly to the similar pattern found in the two sites. The fine root biomass increased with stand age in both sites. In contrast to the evident difference in fine root biomass, there was no clear trend in the fine root vertical distribution pattern with stand age. Our results indicate that fine roots are likely to respond to changes in soil physicochemical properties and stand age by changing fine root biomass rather than by varying rooting pattern.  相似文献   

18.
We integrated soil models with an established ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to investigate the influence of soil processes on modelled values of soil CO2 fluxes (R Soil). Model parameters were determined from literature values and a data assimilation routine that used a 7-year record of the net ecosystem exchange of CO2 and environmental variables collected at a high-elevation subalpine forest (the Niwot Ridge AmeriFlux site). These soil models were subsequently evaluated in how they estimated the seasonal contribution of R Soil to total ecosystem respiration (TER) and the seasonal contribution of root respiration (R Root) to R Soil. Additionally, these soil models were compared to data assimilation output of linear models of soil heterotrophic respiration. Explicit modelling of root dynamics led to better agreement with literature values of the contribution of R Soil to TER. Estimates of R Soil/TER when root dynamics were considered ranged from 0.3 to 0.6; without modelling root biomass dynamics these values were 0.1–0.3. Hence, we conclude that modelling of root biomass dynamics is critically important to model the R Soil/TER ratio correctly. When soil heterotrophic respiration was dependent on linear functions of temperature and moisture independent of soil carbon pool size, worse model-data fits were produced. Adding additional complexity to the soil pool marginally improved the model-data fit from the base model, but issues remained. The soil models were not successful in modelling R Root/R Soil. This is partially attributable to estimated turnover parameters of soil carbon pools not agreeing with expected values from literature and being poorly constrained by the parameter estimation routine. We conclude that net ecosystem exchange of CO2 alone cannot constrain specific rhizospheric and microbial components of soil respiration. Reasons for this include inability of the data assimilation routine to constrain soil parameters using ecosystem CO2 flux measurements and not considering the effect of other resource limitations (for example, nitrogen) on the microbe biomass. Future data assimilation studies with these models should include ecosystem-scale measurements of R Soil in the parameter estimation routine and experimentally determine soil model parameters not constrained by the parameter estimation routine.  相似文献   

19.
The response of belowground biological processes to soil N availability in Larix gmelinii (larch) and Fraxinus mandshurica (ash) plantations was studied. Soil and root respiration were measured with Li-Cor 6400 and gas-phase O2 electrodes, respectively. Compared with the control, N fertilization induced the decreases of fine root biomass by 52% and 25%, and soil respiration by 30% and 24% in larch and ash plantations, respectively. The average soil microbial biomass C and N were decreased by 29% and 42% under larch stand and 39% and 47% under ash stand, respectively. While the fine root tissue N concentration under fertilized plots was higher 26% and 12% than that under control plots, respectively, the average fine root respiration rates were increased by 10% and 13% in larch and ash stands under fertilized plot, respectively. Soil respiration rates showed significantly positive exponential relationships with soil temperature, and a seasonal dynamic. These findings suggest that N fertilization can suppress fine root biomass at five branch orders (<2 mm in diameter), soil respiration, and soil microbial biomass C and N, and alter soil microbial communities in L. gmelinii and F. mandshurica plantations.  相似文献   

20.
The pattern of natural restoration in soil components and processes was documented in five landslide-damaged (1–58-year-old) sites in the moist tropical sal (Shorea robusta) forest ecosystem of Nepal Himalaya. Comparisons were made with an undisturbed forest site in the same region. Concentrations of soil organic C, total N, total P and extractable nutrients (Ca, Mg and K) increased with the age of sites. The 58-year-old site showed concentrations of soil organic C, total N and total P that were 75–89% of concentrations in the undisturbed sal forest. The soil microbial biomass, the active fraction of soil organic matter, showed similar seasonal variations at all sites. The amount of mean microbial biomass (expressed as C, N and P contents) increased 4–5 times at the 58-year-old site relative to the 1-year-old site, and the bulk increase occurred within the initial 15 year. The increase in the C/N ratio of soil microbial biomass with age (9.4–11.6 years) reflected change in its composition. Although the net N-mineralization rate increased consistently until 58 years of age, the proportion of nitrification rate relative to ammonification rate distinctly decreased beyond 40 years. On the other hand, the soil available-N (both NO3 and NH4+) concentrations increased from 1 to 40 year and then declined; with age the proportion of NH4+ increased, however. Rates of restoration in soil properties were faster in the early successional stages (1–15 year) than late stages. Among different soil properties the restoration of soil microbial biomass (C and N) was faster than soil organic C and total N. Best fit power function models showed that the estimated times for the 58-year-old site to reach the level of the undisturbed, mature sal forest would be about 30–35 year for microbial biomass (C and N) and about 100–150 year for organic C and total N. Higher accumulation of soil microbial biomass and high N-mineralization rate at late successional stages indicated the re-establishment of enriched soil and restitution of nutrient cycling during the course of ecosystem restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号