首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobalamin and other corrinoids are essential cofactors for many organisms. The majority of microbes with corrinoid‐dependent enzymes do not produce corrinoids de novo, and instead must acquire corrinoids produced by other organisms in their environment. However, the profile of corrinoids produced in corrinoid‐dependent microbial communities, as well as the exchange and modification of corrinoids among community members have not been well studied. In this study, we applied a newly developed liquid chromatography tandem mass spectrometry‐based corrinoid detection method to examine relationships among corrinoids, their lower ligand bases and specific microbial groups in microbial communities containing Dehalococcoides mccartyi that has an obligate requirement for benzimidazole‐containing corrinoids for trichloroethene respiration. We found that p‐cresolylcobamide ([p‐Cre]Cba) and cobalamin were the most abundant corrinoids in the communities. It suggests that members of the family Veillonellaceae are associated with the production of [p‐Cre]Cba. The decrease of supernatant‐associated [p‐Cre]Cba and the increase of biomass‐associated cobalamin were correlated with the growth of D. mccartyi by dechlorination. This supports the hypothesis that D. mccartyi is capable of fulfilling its corrinoid requirements in a community through corrinoid remodelling, in this case, by importing extracellular [p‐Cre]Cba and 5,6‐dimethylbenzimidazole (DMB) (the lower ligand of cobalamin), to produce cobalamin as a cofactor for dechlorination. This study also highlights the role of DMB, the lower ligand produced in all of the studied communities, in corrinoid remodelling. These findings provide novel insights on roles played by different phylogenetic groups in corrinoid production and corrinoid exchange within microbial communities. This study may also have implications for optimizing chlorinated solvent bioremediation.  相似文献   

2.
Corrinoids are cobalt-containing molecules that function as enzyme cofactors in a wide variety of organisms but are produced solely by a subset of prokaryotes. Specific corrinoids are identified by the structure of their axial ligands. The lower axial ligand of a corrinoid can be a benzimidazole, purine, or phenolic compound. Though it is known that many organisms obtain corrinoids from the environment, the variety of corrinoids that can serve as cofactors for any one organism is largely unstudied. Here, we examine the range of corrinoids that function as cofactors for corrinoid-dependent metabolism in Dehalococcoides mccartyi strain 195. Dehalococcoides bacteria play an important role in the bioremediation of chlorinated solvents in the environment because of their unique ability to convert the common groundwater contaminants perchloroethene and trichloroethene to the innocuous end product ethene. All isolated D. mccartyi strains require exogenous corrinoids such as vitamin B12 for growth. However, like many other corrinoid-dependent bacteria, none of the well-characterized D. mccartyi strains has been shown to be capable of synthesizing corrinoids de novo. In this study, we investigate the ability of D. mccartyi strain 195 to use specific corrinoids, as well as its ability to modify imported corrinoids to a functional form. We show that strain 195 can use only specific corrinoids containing benzimidazole lower ligands but is capable of remodeling other corrinoids by lower ligand replacement when provided a functional benzimidazole base. This study of corrinoid utilization and modification by D. mccartyi provides insight into the array of strategies that microorganisms employ in acquiring essential nutrients from the environment.  相似文献   

3.
To investigate the important supportive microorganisms responsible for trichloroethene (TCE) bioremediation under specific environmental conditions and their relationship with Dehalococcoides (Dhc), four stable and robust enrichment cultures were generated using contaminated groundwater. Enrichments were maintained under four different conditions exploring two parameters: high and low TCE amendments (resulting in inhibited and uninhibited methanogenic activity, respectively) and with and without vitamin B12 amendment. Lactate was supplied as the electron donor. All enrichments were capable of reductively dechlorinating TCE to vinyl chloride and ethene. The dechlorination rate and ethene generation were higher, and the proportion of electrons used for dechlorination increased when methanogenesis was inhibited. Biologically significant cobalamin biosynthesis was detected in the enrichments without B12 amendment. Comparative genomics using a genus-wide microarray revealed a Dhc genome similar to that of strain 195 in all enrichments, a strain that lacks the major upstream corrin ring biosynthesis pathway. Seven other bacterial operational taxonomic units (OTUs) were detected using clone libraries. OTUs closest to Pelosinus, Dendrosporobacter, and Sporotalea (PDS) were most dominant. The Clostridium-like OTU was most affected by B12 amendment and active methanogenesis. Principal component analysis revealed that active methanogenesis, rather than vitamin B12 limitation, exerted a greater effect on the community structures even though methanogens did not seem to play an essential role in providing corrinoids to Dhc. In contrast, acetogenic bacteria that were abundant in the enrichments, such as PDS and Clostridium sp., may be potential corrinoid providers for Dhc.  相似文献   

4.
5.
The dechlorinating Dehalococcoides mccartyi species requires acetate as carbon source, but little is known on its growth under acetate limiting conditions. In this study, we observed growth and dechlorination of a D. mccartyi-containing mixed consortium in a fixed-carbon-free medium with trichloroethene in the aqueous phase and H2/CO2 in the headspace. Around 4 mM formate was produced by day 40, while acetate was constantly below 0.05 mM. Microbial community analysis of the consortium revealed dominance by D. mccartyi and Desulfovibrio sp. (57 and 22% 16S rRNA gene copies, respectively). From this consortium, Desulfovibrio sp. strain F1 was isolated and found to produce formate and acetate (1.2 mM and 48 µM, respectively, by day 24) when cultivated alone in the above mentioned medium without trichloroethene. An established co-culture of strain F1 and D. mccartyi strain 195 demonstrated that strain 195 could grow and dechlorinate using acetate produced by strain F1; and that acetate was constantly below 25 µM in the co-culture. To verify that such low level of acetate is utilizable by D. mccartyi, we cultivated strain 195 alone under acetate-limiting conditions and found that strain 195 consumed acetate to below detection (5 µM). Based on the acetate consumption and cell yield of D. mccartyi, we estimated that on average 1.2?×?108 acetate molecules are needed to supply carbon for one D. mccartyi cell. Our study suggests that Desulfovibrio may supply a steady but low amount of fixed carbon to dechlorinating bacteria, exhibiting important implications for natural bio-attenuation when fixed carbon is limited.  相似文献   

6.
Microbial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans, dechlorinating tetrachloroethene (PCE) to cis−1,2-dichloroethene (cDCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor. In co-cultures, the bacterial cells formed aggregates and D. mccartyi established an unusual, barrel-like morphology. An extracellular matrix surrounding bacterial cells in the aggregates enhanced cell-to-cell contact. PCE was dehalogenated to ethene at least three times faster in the co-culture. The dehalogenation was carried out via PceA of S. multivorans, and PteA (a recently described PCE dehalogenase) and VcrA of D. mccartyi BTF08, as supported by protein abundance. The co-culture was not dependent on exogenous hydrogen and acetate, suggesting a syntrophic relationship in which the obligate hydrogen consumer D. mccartyi consumes hydrogen and acetate produced by S. multivorans. The cobamide cofactor of the reductive dehalogenase—mandatory for D. mccartyi—was also produced by S. multivorans. D. mccartyi strain 195 dechlorinated cDCE in the presence of norpseudo-B12 produced by S. multivorans, but D. mccartyi strain BTF08 depended on an exogenous lower cobamide ligand. This observation is important for bioremediation, since cofactor supply in the environment might be a limiting factor for PCE dehalogenation to ethene, described for D. mccartyi exclusively. The findings from this co-culture give new insights into aggregate formation and the physiology of D. mccartyi within a bacterial community.Subject terms: Environmental microbiology, Symbiosis  相似文献   

7.
Methanosarcina barkeri is capable of synthesizing large amounts of corrinoids, compounds of the vitamin B12 group, although not cobalamin. In the present work, exogenous cobalamin was demonstrated to upregulate DNA synthesis in M. barkeri cell suspensions incubated under air. The effect is similar to the one in Propionibacterium freudenreichii cells, though less pronounced. The growth of the archaeon under anaerobic conditions was shown to be suppressed by cobalamin and 5,6-dimethylbenzimidazole. The data obtained suggest the presence of a corrinoid-dependent ribonucleotide reductase in the archaeal cells which provides for deoxyribose precursors for DNA biosynthesis independently of the presence of molecular oxygen in the medium. Growth suppression under anoxic conditions by cobalamin and 5,6-dimethylbenzimidazole may be due to a decrease in the concentration of factor III, a polyfunctional corrinoid dominating in M. barkeri cells.  相似文献   

8.
Corrinoid (vitamin B12-like) cofactors contain various α-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form “complete” corrinoids aerobically by importing an “incomplete” corrinoid, such as cobinamide (Cbi), and adding appropriate α- and β-axial ligands. Under aerobic conditions, S. enterica performs the corrinoid-dependent degradation of ethanolamine if given vitamin B12, but it can make B12 from exogenous Cbi only if DMB is also provided. Mutants isolated for their ability to degrade ethanolamine without added DMB converted Cbi to pseudo-B12 cofactors (having adenine as an α-axial ligand). The mutations cause an increase in the level of free adenine and install adenine (instead of DMB) as an α-ligand. When DMB is provided to these mutants, synthesis of pseudo-B12 cofactors ceases and B12 cofactors are produced, suggesting that DMB regulates production or incorporation of free adenine as an α-ligand. Wild-type cells make pseudo-B12 cofactors during aerobic growth on propanediol plus Cbi and can use pseudo-vitamin B12 for all of their corrinoid-dependent enzymes. Synthesis of coenzyme pseudo-B12 cofactors requires the same enzymes (CobT, CobU, CobS, and CobC) that install DMB in the formation of coenzyme B12. Models are described for the mechanism and control of α-axial ligand installation.  相似文献   

9.
Cobamides are a group of compounds including vitamin B12 that can vary at the lower base position of the nucleotide loop. They are synthesized de novo by only a subset of prokaryotes, but some organisms encode partial biosynthesis pathways for converting one variant to another (remodeling) or completing biosynthesis from an intermediate (corrinoid salvaging). Here, we explore the cobamide specificity in Vibrio cholerae through examination of three natural variants representing major cobamide groups: commercially available cobalamin, and isolated pseudocobalamin and p-cresolylcobamide. We show that BtuB, the outer membrane corrinoid transporter, mediates the uptake of all three variants and the intermediate cobinamide. Our previous work suggested that V. cholerae could convert pseudocobalamin produced by cyanobacteria into cobalamin. In this work, cobamide specificity in V. cholerae is demonstrated by remodeling of pseudocobalamin and salvaging of cobinamide to produce cobalamin. Cobamide remodeling in V. cholerae is distinct from the canonical pathway requiring amidohydrolase CbiZ, and heterologous expression of V. cholerae CobS was sufficient for remodeling. Furthermore, function of V. cholerae cobamide-dependent methionine synthase MetH was robustly supported by cobalamin and p-cresolylcobamide, but not pseudocobalamin. Notably, the inability of V. cholerae to produce and utilize pseudocobalamin contrasts with enteric bacteria like Salmonella.  相似文献   

10.
Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic sediment-free culture was obtained which dechlorinated HCB, pentachlorobenzene, three TeCB isomers, three trichlorobenzene (TCB) isomers (1,2,3-, 1,2,4- and 1,3,5-TCB) and 1,2-DCB. Dechlorination involved multiple pathways including the removal of doubly flanked, singly flanked and isolated chlorine substituents. 454-pyrosequencing of partial bacterial 16S rRNA genes amplified from selected chlorobenzene dechlorinating sediment-free enrichment cultures revealed the presence of a variety of bacterial species, including Dehalobacter and Dehalococcoides mccartyi, that were previously documented as organohalide respiring bacteria. A genus with apparent close relationship to Desulfitobacterium that also has been associated with organohalide respiration, composed the major fraction of the operational taxonomic units (OTUs). Another major OTU was linked with Sedimentibacter sp., a genus that was previously identified in strict co-cultures of consortia reductively dehalogenating chlorinated compounds. Our data point towards the existence of multiple interactions within highly chlorinated benzene dechlorinating communities.  相似文献   

11.
Cobalt-free corrinoids (CFCs) were isolated from Methanosarcina barkeri Fusaro cells growing on a methanol minimum medium. The methanogen cells excreted a trace of CFCs (9.1 μg/I) into the culture medium when cobalt-deficient methanol medium was used. Several CFCs were separated by column chromatographies on ion exchangers and paper electrophoresis, where a major CFC showed a similar characteristic to that of nucleotide-free corrinoid, Factor B (cobinamide), suggesting to be hydrogenobinamide. By chemical insertion of Co2 +, Cu2 +, and Zn2+ into CFCs, the corresponding corrinoid and its metal analogues were observed. Bioassay using Escherichia coli 215 revealed that the major CFC (a yellow product obtained after alkaline treatment) and its copper and zinc analogues were inactive as cobalamin but were active as antimetabolites of cobalamin. However, the CFC greatly stimulated the cell growth of M. barkeri grown under cobalt-deficient conditions.  相似文献   

12.
13.
《Process Biochemistry》2014,49(12):2235-2240
The interaction of anaerobic dechlorinating cultures with soil and aquifer geochemical components is largely unknown, although this has potentially a major impact on the bioremediation of chlorinated solvent-contaminated sites. In this study, we found that addition of magnetite (Fe3O4) – the end-product of Fe(III)-reduction by dissimilatory iron reducing bacteria – to anaerobic dechlorinating cultures enhances the kinetics of trichloroethene dechlorination up to 1.5-times, compared to unamended controls. Specifically, a low concentration (approx. 10 mg/L as total Fe) of small size particles (200 nm-filtered) resulted in a greater stimulatory effect compared to the addition of a higher concentration (approx. 300 mg/L as total Fe) of unfiltered particles. Notably, Desulforomonas spp. were substantially enriched in microcosms supplemented with magnetite, whereas Dehalococcoides mccartyi spp. was found to be markedly inhibited or outcompeted. Multiple lines of evidence, including the direct visualization of microbial cells and magnetite particles via Confocal Laser Scanning Microscopy (CLSM), suggest that electrically conductive particles promoted the establishment of a cooperative metabolism, based on direct interspecies electron transfer, between dechlorinating and non-dechlorinating microorganisms.  相似文献   

14.
Bacteria belonging to the genus Dehalococcoides play a key role in the complete detoxification of chloroethenes as these organisms are the only microbes known to be capable of dechlorination beyond dichloroethenes to vinyl chloride (VC) and ethene. However, Dehalococcoides strains usually grow slowly with a doubling time of 1 to 2 days and have complex nutritional requirements. Here we describe the growth of Dehalococcoides ethenogenes 195 in a defined mineral salts medium, improved growth of strain 195 when the medium was amended with high concentrations of vitamin B12, and a strategy for maintaining Dehalococcoides strains on lactate by growing them in consortia. Although strain 195 could grow in defined medium spiked with ~0.5 mM trichloroethene (TCE) and 0.001 mg/liter vitamin B12, the TCE dechlorination and cellular growth rates doubled when the vitamin B12 concentration was increased 25-fold to 0.025 mg/liter. In addition, the final ratios of ethene to VC increased when the higher vitamin concentration was used, which reflected the key role that cobalamin plays in dechlorination reactions. No further improvement in dechlorination or growth was observed when the vitamin B12 concentration was increased to more than 0.025 mg/liter. In defined consortia containing strain 195 along with Desulfovibrio desulfuricans and/or Acetobacterium woodii and containing lactate as the electron donor, tetrachloroethene (~0.4 mM) was completely dechlorinated to VC and ethene and there was concomitant growth of Dehalococcoides cells. In the cultures that also contained D. desulfuricans and/or A. woodii, strain 195 cells grew to densities that were 1.5 times greater than the densities obtained when the isolate was grown alone. The ratio of ethene to VC was highest in the presence of A. woodii, an organism that generates cobalamin de novo during metabolism. These findings demonstrate that the growth of D. ethenogenes strain 195 in defined medium can be optimized by providing high concentrations of vitamin B12 and that this strain can be grown to higher densities in cocultures with fermenters that convert lactate to generate the required hydrogen and acetate and that may enhance the availability of vitamin B12.  相似文献   

15.
Two intermediate stages in cobalamin biosynthesis, amidation of carboxylic acid groups in the corrin ring and (R)-1-amino-2-propanol attachment at propionic acid position ?, have been studied using cell-free extracts from the obligate anaerobe Clostridium tetanomorphum. The preparation of an incomplete corrinoid, probably cobinic acid-a,c,d,e,g-pentaamide, as an in vitro amidation substrate was accomplished via mild acid hydrolysis of cobinamide. Weak, but reproducible activities for both amidation and (R)-1-amino-2-propanol attachment were found in crude, nucleic acid-free and DE-52 column-purified protein fractions. The amidation reaction was glutamine-dependent in crude fractions, but became ammonium ion-dependent in more purified fractions. Significant problems encountered were (a) the weak and unstable character of both enzyme activities, and (b) the irreversible changes in the visible spectra of the incomplete corrinoids employed as substrates caused by use of thiol-reducing agents in the buffers and assays.  相似文献   

16.
17.
Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine.  相似文献   

18.
19.
20.
Competitive PCR and denaturing HPLC analyses together with an assay detecting potential polychlorinated biphenyl (PCB) dechlorinating activities were combined with physical-chemical site characterizations to identify factors affecting the reductive dechlorination of PCBs in the three historically impacted sediments: Grasse and Buffalo Rivers, NY and Anacostia River, DC. In Grasse River sediment an in situ enriched population of Dehalococcoides phylotypes was abundant in high numbers together with a relatively high dechlorination activity and a high concentration of congeners containing unflanked chlorine substitutions. In contrast microbial communities in Anacostia and Buffalo Rivers sediments consisted of similar total numbers of putative dechlorinating bacteria, but the populations consisted of more diverse putative dechlorinating phylotypes and were associated with lower dechlorination activities and higher concentrations of flanked congeners. Differences observed in the PCB dechlorination activity were not influenced by the chemical PCB availability in spiked sediment or physical sediment characteristics, but were consistent with the concentration of PCBs and total organic carbon in the native sediment. Application of molecular methods for selective detection of indigenous microbial dechlorinating communities combined with assessment of the dechlorinating activity and analysis of the in situ congener profiles provided a comprehensive approach for characterization and identification of sites that are amenable to bioremediation, which is essential for the development of in situ treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号