首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of inorganic Hg [Hg(II)i] association, methylation, and methylmercury (MeHg) demethylation were examined for a group of Desulfovibrio species with and without MeHg production capability. We employed a detailed method for assessing MeHg production in cultures, including careful control of medium chemistry, cell density, and growth phase, plus mass balance of Hg(II)i and MeHg during the assays. We tested the hypothesis that differences in Hg(II)i sorption and/or uptake rates drive observed differences in methylation rates among Desulfovibrio species. Hg(II)i associated rapidly and with high affinity to both methylating and nonmethylating species. MeHg production by Hg-methylating strains was rapid, plateauing after ∼3 h. All MeHg produced was rapidly exported. We also tested the idea that all Desulfovibrio species are capable of Hg(II)i methylation but that rapid demethylation masks its production, but we found this was not the case. Therefore, the underlying reason why MeHg production capability is not universal in the Desulfovibrio is not differences in Hg affinity for cells nor differences in the ability of strains to degrade MeHg. However, Hg methylation rates varied substantially between Hg-methylating Desulfovibrio species even in these controlled experiments and after normalization to cell density. Thus, biological differences may drive cross-species differences in Hg methylation rates. As part of this study, we identified four new Hg methylators (Desulfovibrio aespoeensis, D. alkalitolerans, D. psychrotolerans, and D. sulfodismutans) and four nonmethylating species (Desulfovibrio alcoholivorans, D. tunisiensis, D. carbinoliphilus, and D. piger) in our ongoing effort to generate a library of strains for Hg methylation genomics.  相似文献   

2.
Mercury (Hg) pollution is usually regarded as an environmental stress in reducing microbial diversity and altering bacterial community structure. However, these results were based on relatively short-term studies, which might obscure the real response of microbial species to Hg contamination. Here, we analysed the bacterial abundance and community composition in paddy soils that have been potentially contaminated by Hg for more than 600 years. Expectedly, the soil Hg pollution significantly influenced the bacterial community structure. However, the bacterial abundance was significantly correlated with the soil organic matter content rather than the total Hg (THg) concentration. The bacterial alpha diversity increased at relatively low levels of THg and methylmercury (MeHg) and subsequently approached a plateau above 4.86 mg kg?1 THg or 18.62 ng g?1 MeHg, respectively. Contrasting with the general prediction of decreasing diversity along Hg stress, our results seem to be consistent with the intermediate disturbance hypotheses with the peak biological diversity under intermediate disturbance or stress. This result was partly supported by the inconsistent response of bacterial species to Hg stress. For instance, the relative abundance of Nitrospirae decreased, while that of Gemmatimonadetes increased significantly along the increasing soil THg and MeHg concentrations. In addition, the content of SO4 2?, THg, MeHg and soil depth were the four main factors influencing bacterial community structures based on the canonical correspondence analysis (CCA). Overall, our findings provide novel insight into the distribution patterns of bacterial community along the long-term Hg-contaminated gradient in paddy soils.  相似文献   

3.
Methylmercury (MeHg) production is controlled by the bioavailability of inorganic divalent mercury (Hg(II)i) and Hg-methylation capacity of the microbial community (conferred by the hgcAB gene cluster). However, the relative importance of these factors and their interaction in the environment remain poorly understood. Here, metagenomic sequencing and a full-factorial MeHg formation experiment were conducted across a wetland sulfate gradient with different microbial communities and pore water chemistries. From this experiment, the relative importance of each factor on MeHg formation was isolated. Hg(II)i bioavailability correlated with the dissolved organic matter composition, while the microbial Hg-methylation capacity correlated with the abundance of hgcA genes. MeHg formation responded synergistically to both factors. Notably, hgcA sequences were from diverse taxonomic groups, none of which contained genes for dissimilatory sulfate reduction. This work expands our understanding of the geochemical and microbial constraints on MeHg formation in situ and provides an experimental framework for further mechanistic studies.  相似文献   

4.
Methylated mercury (MeHg) can be produced by all microbes possessing the genes hgcA and hgcB, which can include sulfate-reducing bacteria (SRB), iron-reducing bacteria (FeRB), methane-producing archaea (MPA), and other anaerobic microbes. These microbial groups compete for substrates, including hydrogen and acetate. When sulfate is in excess, SRB can outcompete other anaerobic microbes. However, low concentrations of sulfate, which often occur in stream sediments, are thought to reduce the relative importance of SRB. Although SRB are regarded as the primary contributors of MeHg in many aquatic environments, their significance may not be universal, and stream sediments are poorly studied with respect to microbial Hg methylation. We evaluated suppression of methanogenesis by SRB and the potential contributions from SRB, MPA and other MeHg producing microbes (including FeRB) to the production of MeHg in stream sediments from the North Carolina Piedmont region. Lower methanogenesis rates were observed when SRB were not inhibited, however, application of a sulfate-reduction inhibitor stimulated methanogenesis. Greater MeHg production occurred when SRB were active. Other MeHg producing microbes (i.e., FeRB) contributed significantly less MeHg production than SRB. MPA produced MeHg in negligible amounts. Our results suggest that SRB are responsible for the majority of MeHg production and suppress methanogenesis in mid-order stream sediments, similar to other freshwater sediments. Further investigation is needed to evaluate the generality of these findings to streams in other regions, and to determine the mechanisms regulating sulfate and electron acceptor availability and other potential factors governing Hg methylation and methane production in stream sediments.  相似文献   

5.
The mechanisms and rates of mercury methylation in the Florida Everglades are of great concern because of potential adverse impacts on human and wildlife health through mercury accumulation in aquatic food webs. We developed a new PCR primer set targeting hgcA, a gene encoding a corrinoid protein essential for Hg methylation across broad phylogenetic boundaries, and used this primer set to study the distribution of hgcA sequences in soils collected from three sites along a gradient in sulfate and nutrient concentrations in the northern Everglades. The sequences obtained were distributed in diverse phyla, including Proteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia; however, hgcA clone libraries from all sites were dominated by sequences clustering within the order Syntrophobacterales of the Deltaproteobacteria (49 to 65% of total sequences). dsrB mRNA sequences, representing active sulfate-reducing prokaryotes at the time of sampling, obtained from these sites were also dominated by Syntrophobacterales (75 to 89%). Laboratory incubations with soils taken from the site low in sulfate concentrations also suggested that Hg methylation activities were primarily mediated by members of the order Syntrophobacterales, with some contribution by methanogens, Chloroflexi, iron-reducing Geobacter, and non-sulfate-reducing Firmicutes inhabiting the sites. This suggests that prokaryotes distributed within clades defined by syntrophs are the predominant group controlling methylation of Hg in low-sulfate areas of the Everglades. Any strategy for managing mercury methylation in the Everglades should consider that net mercury methylation is not limited to the action of sulfate reduction.  相似文献   

6.
In many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 and 2,000 years of paddy soil management compared to findings for a tidal wetland. Changes in abundance and diversity of the functional groups could be observed, reflecting the different chemical and physical properties of the soils, which changed in terms of soil development. The tidal wetland was characterized by a low microbial biomass and relatively high abundances of ammonia-oxidizing microbes. Conversion of the tidal wetlands into paddy soils was followed by a significant increase in microbial biomass. Fifty years of paddy management resulted in a higher abundance of nitrogen-fixing microbes than was found in the tidal wetland, whereas dominant genes of nitrification and denitrification in the paddy soils showed no differences. With ongoing rice cultivation, copy numbers of archaeal ammonia oxidizers did not change, while that of their bacterial counterparts declined. The nirK gene, coding for nitrite reductase, increased with rice cultivation time and dominated its functionally redundant counterpart, nirS, at all sites under investigation. Relative species richness showed significant differences between all soils with the exception of the archaeal ammonia oxidizers in the paddy soils cultivated for 100 and 300 years. In general, changes in diversity patterns were more pronounced than those in functional gene abundances.  相似文献   

7.
Methylmercury (MeHg), a neurotoxic substance that accumulates in aquatic food chains and poses a risk to human health, is synthesized by anaerobic microorganisms in the environment. To date, mercury (Hg) methylation has been attributed to sulfate- and iron-reducing bacteria (SRB and IRB, respectively). Here we report that a methanogen, Methanospirillum hungatei JF-1, methylated Hg in a sulfide-free medium at comparable rates, but with higher yields, than those observed for some SRB and IRB. Phylogenetic analyses showed that the concatenated orthologs of the Hg methylation proteins HgcA and HgcB from M. hungatei are closely related to those from known SRB and IRB methylators and that they cluster together with proteins from eight other methanogens, suggesting that these methanogens may also methylate Hg. Because all nine methanogens with HgcA and HgcB orthologs belong to the class Methanomicrobia, constituting the late-evolving methanogenic lineage, methanogenic Hg methylation could not be considered an ancient metabolic trait. Our results identify methanogens as a new guild of Hg-methylating microbes with a potentially important role in mineral-poor (sulfate- and iron-limited) anoxic freshwater environments.  相似文献   

8.
长期施肥对稻田土壤固碳功能菌群落结构和数量的影响   总被引:3,自引:0,他引:3  
微生物固碳在减缓全球气候变化、实现人类可持续发展方面具有重要的意义,通过揭示长期不同施肥制度对土壤固碳细菌的影响规律,可以为我国稻田土壤科学施肥,稻田固碳和温室气体减排的共轭双赢作用提供重要的理论依据。以湖南宁乡国家级稻田肥力变化长期定位试验为平台,采用PCR-克隆测序和实时荧光定量(Real-time)PCR技术,研究不施肥(CK),氮磷钾肥(NPK)和秸秆还田(NPKS)3种长期施肥制度对稻田土壤固碳细菌群落结构及数量的影响。通过分析固碳细菌cbbL基因文库发现,长期施肥导致土壤固碳细菌种群结构产生了明显差异,NPK和NPKS处理中兼性自养固碳菌群落优势增加而严格自养固碳菌生长受到抑制。LUBSHUFF软件统计分析显示cbbL基因文库在CK、NPK及NPKS处理间均存在显著性差异。 3种施肥处理的稻田土壤细菌cbbL基因拷贝数为3.35?108 —5.61?108每克土,施肥后,土壤细菌cbbL基因数量增加,其中NPKS处理cbbL数量最多,是CK处理的1.5倍左右。稀疏曲线则显示长期施化肥导致细菌cbbL基因多样性高于NPKS,而NPKS高于CK。上述结果表明了长期施肥对土壤固碳细菌群落结构,多样性及数量均有显著的影响。本研究结果可为深入探讨稻田土壤微生物固碳潜力及其影响机理提供有力的依据。  相似文献   

9.
Autotrophic carbon dioxide (CO2) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%–82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14C-CO2 are assimilated into SOC (74.3–175.8 mg 14C kg−1) and microbial biomass (5.2–24.1 mg 14C kg−1) after 45 days incubation, where more than 70% of 14C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.  相似文献   

10.
The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “Candidatus Brocadia” and “Candidatus Kuenenia” and two novel unidentified clusters were detected, with “Candidatus Brocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104 to 9.65 × 104 copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 106 Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.  相似文献   

11.
To study the effects of long-term selenium supplementation on absorption, distribution, and elimination of methylmercury (MeHg) in mice, three groups of male mice (Balb/c CA) were exposed for 7 wk to 0, 0.6, and 3 ppm sodium selenite in tap water. They were then given a single oral dose of Me203Hg (2 μmol/kg) by gastric intubation, and elimination of203Hg was followed by whole-body counting for 49 d at the same Se exposure as previously. Twenty-four hours and 49 d after dosage, 6–7 animals/group were sampled for analysis of203Hg distribution in the body. Glutathione peroxidase (GSH-PX) activity in blood and selenium levels in the liver were used as measures of selenium status. Gastrointestinal absorption of Me203Hg was not influenced by the Se status of the animals. Selenium supplementation of MeHg-exposed mice caused an enhanced whole-body elimination of Hg, but selenium-supplemented animals did not have lower Hg levels in the brain and kidney than nonsupplemented animals. The effect of selenium on the accumulation, of Hg in the brain was dose-dependent, a high dose (3 ppm Se) causing a higher initial accumulation of Hg. The intracellular distribution of203Hg in the liver and kidney was not affected by Se. The results indicate that selenium treatment of MeHg-exposed mice may have a positive effection the health of the animals by decreasing the total body burden of MeHg.  相似文献   

12.
Methylation of mercury (Hg) is the crucial process that controls Hg biomagnification along the aquatic food chains. Aquatic sediments are of particular interest because they constitute an essential reservoir where inorganic divalent Hg (HgII) is methylated. Methylmercury (MeHg) concentrations in sediments mainly result from the balance between methylation and demethylation reactions, two opposite natural processes primarily mediated by aquatic microorganisms. Thus, Hg availability and the activity of methylating microbial communities control the MeHg abundance in sediments. Consistently, some studies have reported a significant positive correlation between MeHg and HgII or total Hg (HgT), taken as a proxy for HgII, in aquatic sediments using enzyme-catalyzed methylation/demethylation mechanisms. By compiling 1,442 published and unpublished HgT–MeHg couples from lacustrine, riverine, estuarine and marine sediments covering various environmental conditions, from deep pristine abyssal to heavily contaminated riverine sediments, we show that a Michaelis–Menten type relationship is an appropriate model to relate the two parameters: MeHg = aHgT/(K m  + HgT), with a = 0.277 ± 0.011 and K m  = 188 ± 15 (R 2 = 0.70, p < 0.001). From K m variations, which depend on the various encountered environmental conditions, it appears that MeHg formation and accumulation are favoured in marine sediments compared to freshwater ones, and under oxic/suboxic conditions compared to anoxic ones, with redox potential and organic matter lability being the governing factors.  相似文献   

13.

Background and Aims

Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects.

Methods

Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied.

Key Results

The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis.

Conclusions

Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.  相似文献   

14.
Litterfall from trees has been identified as an important pathway for deposition of mercury (Hg) and methylmercury (MeHg) in forested catchments, but very little is known about the role of ground vegetation in deposition and cycling of Hg compounds. This study was conducted to identify the origin of Hg compounds in the ground vegetation, and to estimate the role of its litterfall with respect to pools and fluxes of Hg in a coniferous forest in the German Fichtelgebirge mountains. Above and below ground biomass of the dominant ground vegetation (Vaccinium myrtillus, Deschampsia flexuosa and Calamagrostis villosa) were sampled at several plots successively during the growing season. The fluxes to the soil via litterfall of the ground vegetation were calculated using contents of Hg and MeHg in the annual fractions of aboveground biomass. With fluxes of 0.4 – 7.8 mg Hgtotal ha–1 a–1 and 0.01 – 0.04 mg MeHg ha–1 a–1 (depending on the plant species) this pathway contributes only a few percent to the total deposition of both compounds in the catchment. To identify the uptake pathways of Hg compounds, the same plant species were grown in a pot experiment with addition of isotope labelled Hg compounds (202Hg2+, Me198Hg) to a clean sand substrate. Only small proportions of 202Hg and Me198Hg in the substrate were taken up by the plants, but in all cases the proportion translocated into aboveground biomass after uptake was greater in case of Me198Hg. Thus, internal recycling in the plant-soil system is a source especially for MeHg in the ground vegetation. However, as compared to the input of Hg compounds by tree litterfall and storage in the forest floor, Hgtotal and MeHg in ground vegetation are of minor importance. High volatilization of added Hg isotopes raises the question of a re-emission of Hg compounds by the transpiration flux of the ground vegetation.  相似文献   

15.
16.
Despite methylmercury (MeHg) production in boreal wetlands being a research focus for decades, little is known about factors in control of methylation and demethylation rates and the effect of wetland type. This is the first study reporting potential Hg methylation (k m ) and MeHg demethylation rate constants (k d ) in boreal wetland soils. Seven wetlands situated in northern and southern Sweden were characterized by climatic parameters, nutrient status (e.g. type of vegetation, pH, C/N ratio, specific UV-absorption), iron and sulfur biogeochemistry. Based on nutrient status, the wetlands were divided into three groups; (I) three northern, nutrient poor fens, (II) a nutrient gradient ranging from an ombrotrophic bog to a fen with intermediate nutrient status, and (III) southern, more nutrient rich sites including two mesotrophic wetlands and one alder (Alnus) forest swamp. The k m /k d ratio in general followed %MeHg in soil and both measures were highest at the fen site with intermediate nutrient status. Northern nutrient poor fens and the ombrotrophic bog showed intermediate values of %MeHg and k m /k d . The two mesotrophic wetlands showed the lowest %MeHg and k m /k d , whereas the alder swamp had high k m and k d , resulting in an intermediate k m /k d and %MeHg. Molybdate addition experiments suggest that net MeHg production was mainly caused by the activity of sulfate reducing bacteria. A comparison with other studies, show that k m and %MeHg in boreal freshwater wetlands in general are higher than in other environments. Our results support previous suggestions that the highest MeHg net production in boreal landscapes is to be found in fens with an intermediate nutrient status.  相似文献   

17.
We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0.  相似文献   

18.
In this paper we investigate the hypothesis that long-term sulphate (SO4 2−) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO4 2− on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO4 2− started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha−1 yr−1 of sulphur (S) addition (1.3±0.08 ng L−1, SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha−1 yr−1 of ambient S deposition (0.6±0.02 ng L−1, SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L−1 compared to +/−0.5 ng L−1 in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r2 = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO4 2− to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO4 2− deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO4 2− in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.  相似文献   

19.

Background and aims

Rice grains contaminated by mercury (Hg) and methylmercury (MeHg) pose risks to human health. This study evaluated the relative importance of genotype, environment and genotype-environment interactions on the accumulation of total Hg (THg) and MeHg in brown rice.

Methods

A pot trial with four rice genotypes and 10 Hg-contaminated paddy soils was conducted under greenhouse conditions. The effects of genotype, environment and genotype-environment interactions on brown rice THg and MeHg accumulation were assessed by an Additive Main Effects and Multiplicative Interaction (AMMI) model.

Results

THg and MeHg concentrations in brown rice ranged from 20.5 to 75.5 μg kg?1 and 2.24 to 54.7 μg kg?1, respectively. The AMMI model indicated that genotype explained 41.1 and 19.6%, environment described 40.6 and 55.8%, and the genotype-environment interaction explained 11.9 and 20.0% of the variation in brown rice THg and MeHg levels, respectively. Brown rice THg positively correlated with water-soluble Hg and total potassium, but negatively correlated with total sulphur, iron, total organic carbon and nickel in soils. Brown rice MeHg negatively correlated with soil pH and selenium.

Conclusion

THg accumulation in brown rice was mainly affected by both genotype and environment, whereas MeHg accumulation was largely determined by environment.
  相似文献   

20.
Carbon dioxide (CO2) assimilation by autotrophic bacteria is an important process in the soil carbon cycle with major environmental implications. The long-term impact of fertilizer on CO2 assimilation in the bacterial community of paddy soils remains poorly understood. To narrow this knowledge gap, the composition and abundance of CO2-assimilating bacteria were investigated using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] in paddy soils. Soils from three stations in subtropical China were used. Each station is part of a long-term fertilization experiment with three treatments: no fertilizer (CK), chemical fertilizers (NPK), and NPK combined with rice straw (NPKM). At all of the stations, the cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, and Ralstonia eutropha. The community composition in the fertilized soil (NPK and NPKM) was distinct from that in unfertilized soil (CK). The bacterial cbbL abundance (3–8?×?108 copies g soil?1) and RubisCO activity (0.40–1.76 nmol CO2 g soil?1 min?1) in paddy soils were significantly positively correlated, and both increased with the addition of fertilizer. Among the measured soil parameters, soil organic carbon and pH were the most significant factors influencing the community composition, abundance, and activity of the cbbL-containing bacteria. These results suggest that long-term fertilization has a strong impact on the activity and community of cbbL-containing bacterial populations in paddy soils, especially when straw is combined with chemical fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号