首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.  相似文献   

2.
This study evaluated the effects of high-grain diets on the rumen fermentation, epithelial bacterial community, morphology of rumen epithelium, and local inflammation of goats during high-grain feeding. Twelve 8-month-old goats were randomly assigned to two different diets, a hay diet or a high-grain diet (65% grain, HG). At the end of 7 weeks of treatment, samples of rumen content and rumen epithelium were collected. Rumen pH was lower (P < 0.05), but the levels of volatile fatty acids and lipopolysaccharides were higher (P < 0.05) in the HG group than those in the hay group. The principal coordinate analysis indicated that HG diets altered the rumen epithelial bacterial community, with an increase in the proportion of genus Prevotella and a decrease in the relative abundance of the genera Shuttleworthia and Fibrobacteres. PICRUSt analysis suggested that the HG-fed group had a higher (P < 0.05) relative abundance of gene families related to energy metabolism; folding, sorting, and degradation; translation; metabolic diseases; and immune system. Furthermore, HG feeding resulted in the rumen epithelial injury and upregulated (P < 0.05) the gene expressions of IL-1β and IL-6, and the upregulations were closely related to the rumen pH, LPS level, and rumen epithelial bacteria abundance. In conclusion, our results indicated that the alterations in the rumen environment and epithelial bacterial community which were induced by HG feeding may result in the damage and local inflammation in the rumen epithelium, warranting further study of rumen microbial–host interactions in the HG feeding model.  相似文献   

3.
This study evaluated the effects of selected essential oils on archaeal communities using the ovine rumen model. Forty weaned Canadian Arcott ewes, fed with barley-based diet, were allotted to one of three essential oil supplementation treatments or a control (10 ewes per treatment) for 13 weeks. The treatments were cinnamaldehyde, garlic oil, juniper berry oil, and a control with no additive. Rumen content was sampled after slaughter and grouped by treatment by combining subsamples from each animal. DNA was extracted from the pooled samples and analyzed for methanogenic archaea using quantitative polymerase chain reaction, denaturing gradient gel electrophoresis, cloning, and sequencing. Our results suggest that the total copy number of archaeal 16S rRNA was not significantly affected by the treatments. The phylogenetic analysis indicated a trend toward an increased diversity of methanogenic archaea related to Methanosphaera stadtmanae, Methanobrevibacter smithii, and some uncultured groups with cinnamaldehyde, garlic, and juniper berry oil supplementation. The trends in the diversity of methanogenic archaea observed with the essential oil supplementation may have resulted from changes in associated protozoal species. Supplementation of ruminant diets with essential oils may alter the diversity of rumen methanogens without affecting the methanogenic capacity of the rumen.  相似文献   

4.
Isolated rumen bacteria were examined for growth and, where appropriate, for their ability to degrade cellulose in the presence of the hydroxycinnamic acids trans-p-coumaric acid and trans-ferulic acid and the hydroxybenzoic acids vanillic acid and 4-hydroxybenzoic acid. Ferulic and p-coumaric acids proved to be the most toxic of the acids examined and suppressed the growth of the cellulolytic strains Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes when included in a simple sugars medium at concentrations of >5 mM. The extent of cellulose digestion by R. flavefaciens and B. succinogenes but not R. albus was also substantially reduced. Examination of rumen fluid from sheep maintained on dried grass containing 0.51% phenolic acids showed the presence of phloretic acid (0.1 mM) and 3-methoxyphloretic acid (trace) produced by hydrogenation of the 2-propenoic side chain of p-coumaric and ferulic acids, respectively. The parent acids were found in trace amounts only, although they represented the major phenolic acids ingested. Phloretic and 3-methoxyphloretic acids proved to be considerably less toxic than their parent acids. All of the cellulolytic strains (and Streptococcus bovis) showed at least a limited ability to hydrogenate hydroxycinnamic acids, with Ruminococcus spp. proving the most effective. No further modification of hydroxycinnamic acids was produced by the single strains of bacteria examined. However, a considerable shortfall in the recovery of added phenolic acids was noted in media inoculated with rumen fluid. It is suggested that hydrogenation may serve to protect cellulolytic strains from hydroxycinnamic acids.  相似文献   

5.
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.  相似文献   

6.
Rumen ciliate-associated bacteria and methanogenic archaea were analyzed by a 16S rRNA gene retrieved from a single cell of Polyplastron multivesiculatum, Isotricha intestinalis, and Ophryoscolex purkynjei. Rumen fluid was taken from a ruminally fistulated goat to prepare a ciliate fraction. Ciliate mixtures were incubated under mixtures of antibiotics for 48 h to eliminate extracellular bacteria. Individual cells of rumen ciliates were selected under microscopic observation after fixation with ethanol. Bacterial and archaeal 16S rRNA gene sequences were retrieved from each cell of three genera of ciliate. Two archaeal sequences related to Methanobrevibacter smithii were distributed to nearly all ciliate cells tested. These two methanogenic archaea were likely to be endosymbiotic methanogens commonly carried by the rumen ciliate, although some other sequences similar to the other genera were detected. A range of proteobacteria was retrieved from cells of P. multivesiculatum. Some sequences showed similarities to the previously known endosymbiotic proteobacteria. However, there were no proteobacteria that were carried by all the ciliate cells tested.  相似文献   

7.
Abstract Samples of rumen ingesta from two rumen-fistulated dairy cows fed grass silage-based diets were examined for numbers and types of bacteria that developed colonies on rumen fluid-agar media designated to support the growth of (a) a wide range of species, (b) cellulolytic bacteria, (c) lactate-fermenting bacteria, (d) non-fermentative bacteria. The most numerous species was Bacteroides ruminicola followed by Butyrivibrio fibrisolvens . The most abundant cellulolytic species were Eubacterium cellulosolvens and Ruminococcus flavefaciens. Megasphaera elsdenii and Selenomonas ruminantium were important lactate fermenters but an unidentified bacterium that grew poorly on maintenance medium was by far the most numerous among bacteria isolated from lactate-containing medium. One strain remained sufficiently viable to show that it fermented lactate to propionate and acetate.  相似文献   

8.
Eight strains of cellulolytic cocci were isolated from a 10-8 dilution of rumen ingesta and were presumptively identified as Ruminococcus flavefaciens. Four strains were isolated from a steer fed a purified diet which contained isolated soy protein, and four strains were isolated from a steer fed a purified diet which contained urea. Certain growth factor requirements of these bacteria were determined. All strains grew with clarified rumen fluid added to the medium. However, fatty acids could substitute for rumen fluid in four strains. Two strains isolated from each steer either required or their growth was stimulated by isobutyric and/or isovaleric and/or 2-methyl-butyric acid. These results indicate that, even when a diet was fed which contained no branched-chain amino acids, the carbon skeleton precursors of branched-chain fatty acids, the cattle were still able to maintain a large population of cellulolytic bacteria that require fatty acids for growth. Therefore, the fatty acids appear to be provided by other bacteria, by protozoa, or by the host animal.  相似文献   

9.
AIM: To examine the effect of concentrate and yeast additive on the number of cellulolytic bacteria in the rumen of sheep. METHODS AND RESULTS: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens were quantified using real-time PCR (targeting 16S rDNA) in parallel to cellulolytic flora enumeration with cultural techniques. Whatever the conditions tested, R. flavefaciens was slightly more abundant than F. succinogenes, with both species outnumbering R. albus. Before feeding, the shift from hay to hay plus concentrate diet had no effect on rumen pH and on the number of the three specie; while after feeding, the concentrate-supplemented diet induced a decrease (-1 log) of the number of the three species concomitant with the rumen acidification. Overall, the presence of the live yeast resulted in a significant increase (two- to fourfold) of the Ruminococci. CONCLUSION: The use of real-time PCR allowed us to show changes in the number of cellulolytic bacterial species in vivo in response to diet shift and additives that could not be as easily evidenced by classical microbial methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the understanding of the negative impact of readily fermentable carbohydrates on rumen cellulolysis and the beneficial effect of yeast on rumen fermentation.  相似文献   

10.
Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogens were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 × 104 and 4 × 104 cells ml−1 respectively).  相似文献   

11.
Four sheep were fed an alfalfa hay diet. Rumen content samples were collected three hours after feeding in order to total microorganism population (TP), solid attached population (SAP) and solid attached firmly population (SAFP). Fibrolytic specific activities (xylanase, CMCase and beta-glycosidases) were estimated by the amount of reducing sugars or p-nitrophenol released from the appropriate substrate. The distribution of the three main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens) was quantified by dot-blot hybridisation using specific 16S-rRNA-targeting probes. Specific activities of polysaccharidase enzymes were higher in SAP than in TP, and in SAFP than in SAP. The sum of RNA of the three cellulolytic bacterial species represented on average 9% of the total bacterial RNA, and increased after filtration. In all samples, the relative population size of F. succinogenes was higher than that of R. albus and of R. flavefaciens. These results demonstrate that the most active enzymes are secreted by the particle-associated microorganisms. The differences in composition of the microflora between the solid and liquid phase suggest that bacteria are not equally distributed throughout the rumen content: the cellulolytic species are present in a higher proportion in the solid phase of rumen contents.  相似文献   

12.
The objective of this study was to investigate the effects of a flaxseed-supplemented diet on archaeal abundance and gene expression of methanogens in the rumen of dairy cows. In all, 11 non-lactating dairy cows were randomly divided into two groups: group A (five cows) and B (six cows). The two diets fed were: (1) the control diet, a conventional dry cow ration; and (2) the flaxseed-supplemented diet, the conventional dry cow ration adjusted with 12.16% ground flaxseed incorporated into the total mixed ration. A cross-over experiment was performed with the two groups of cows fed the two different diets for five 21-day periods, which included the first adaptation period followed by two treatment and two wash out periods. At the end of each feeding period, rumen fluid samples were collected via rumenocentesis and DNA was extracted. Quantitative PCR was utilized to analyze the gene abundance of 16S ribosomal RNA (16S rRNA) targeting the ruminal archaea population and the mcrA gene coding for methyl coenzyme-M reductase subunit A, a terminal enzyme in the methanogenesis pathway. Results demonstrated a 49% reduction of 16S rRNA and 50% reduction of mcrA gene abundances in the rumen of dairy cows fed the flaxseed-supplemented diet in comparison with those fed the control diet. This shows flaxseed supplementation effectively decreases the methanogenic population in the rumen. Future studies will focus on the mechanisms for such reduction in the rumen of dairy cattle, as well as the relationship between methanogenic gene expression and methane production.  相似文献   

13.
Feeding ruminants a high-grain (HG) diet is a widely used strategy to improve milk yield and cost efficiency. However, it may cause certain metabolic disorders. At present, information about the effects of HG diets on the systemic metabolic profile of goats and the correlation of such diets with rumen bacteria is limited. In the present study, goats were randomly divided into two groups: one was fed the hay diet (hay; n = 5), while the other was fed HG diets (HG; n = 5). On day 50, samples of rumen contents, peripheral blood serum and liver tissues were collected to determine the metabolic profiles in the rumen fluid, liver and serum and the microbial composition in rumen. The results revealed that HG diets reduced (P < 0.05) the community richness and diversity of rumen microbiota, with an increase in the Chao 1 and Shannon index and a decrease in the Simpson index. HG diets also altered the composition of rumen microbiota, with 30 genera affected (P < 0.05). Data on the metabolome showed that the metabolites in the rumen fluid, liver and serum were affected (variable importance projection > 1, P <0.05) by dietary treatment, with 47, 10 and 27 metabolites identified as differentially metabolites. Pathway analysis showed that the common metabolites in the shared key pathway (aminoacyl-transfer RNA biosynthesis) in the rumen fluid, liver and serum were glycine, lysine and valine. These findings suggested that HG diets changed the composition of the rumen microbiota and metabolites in the rumen fluid, liver and serum, mainly involved in amino acid metabolism. Our findings provide new insights into the understanding of diet-related systemic metabolism and the effects of HG diets on the overall health of goats.  相似文献   

14.
Physically effective fiber is needed by dairy cattle to prevent ruminal acidosis. This study aimed to examine the effects of different sources of physically effective fiber on the populations of fibrolytic bacteria and methanogens. Five ruminally cannulated Holstein cows were each fed five diets differing in physically effective fiber sources over 15 weeks (21 days/period) in a Latin Square design: (1) 44.1% corn silage, (2) 34.0% corn silage plus 11.5% alfalfa hay, (3) 34.0% corn silage plus 5.1% wheat straw, (4) 36.1% corn silage plus 10.1% wheat straw, and (5) 34.0% corn silage plus 5.5% corn stover. The impact of the physically effective fiber sources on total bacteria and archaea were examined using denaturing gradient gel electrophoresis. Specific real-time PCR assays were used to quantify total bacteria, total archaea, the genus Butyrivibrio, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and three uncultured rumen bacteria that were identified from adhering ruminal fractions in a previous study. No significant differences were observed among the different sources of physical effective fiber with respect to the microbial populations quantified. Any of the physically effective fiber sources may be fed to dairy cattle without negative impact on the ruminal microbial community.  相似文献   

15.
Association patterns between archaea and rumen protozoa were evaluated by analyzing archaeal 16S rRNA gene clone libraries from ovine rumen inoculated with different protozoa. Five protozoan inoculation treatments, fauna free (negative control), holotrich and cellulolytic protozoa, Isotricha and Dasytricha spp., Entodinium spp., and total fauna (type A) were tested. We used denaturing gradient gel electrophoresis, quantitative PCR, and phylogenetic analysis to evaluate the impact of the protozoan inoculants on the respective archaeal communities. Protozoan 18S ribosomal DNA clone libraries were also evaluated to monitor the protozoal population that was established by the inoculation. Phylogenetic analysis suggested that archaeal clones associated with the fauna-free, the Entodinium, and the type A inoculations clustered primarily with uncultured phylotypes. Polyplastron multivesiculatum was the predominant protozoan strain established by the holotrich and cellulolytic protozoan treatment, and this resulted predominantly in archaeal clones affiliated with uncultured and cultured methanogenic phylotypes (Methanosphaera stadtmanae, Methanobrevibacter ruminantium, and Methanobacterium bryantii). Furthermore, the Isotricha and Dasytricha inoculation treatment resulted primarily in archaeal clones affiliated with Methanobrevibacter smithii. This report provides the first assessment of the influence of protozoa on archaea within the rumen microbial community and provides evidence to suggest that different archaeal phylotypes associate with specific groups of protozoa. The observed patterns may be linked to the evolution of commensal and symbiotic relationships between archaea and protozoa in the ovine rumen environment. This report further underscores the prevalence and potential importance of a rather large group of uncultivated archaea in the ovine rumen, probably unrelated to known methanogens and undocumented in the bovine rumen.  相似文献   

16.
This study was aimed to investigate the impact of subacute ruminal acidosis (SARA) on the diversity of liquid (LAB) and solid-associated bacteria (SAB) following high-grain feeding. Six ruminally cannulated goats were divided into two groups: one group was fed a hay diet (COD), and the other group was fed a high grain diet (SAID). Rumen liquids and rumen solids were sampled after 2 weeks adaption. SARA was diagnosed with a pH below 5.8 for 8 h. SAID decreased ruminal pH (P < 0.001) and increased the acetate (P = 0.017), propionate (P = 0.001), butyrate (P < 0.001) and total volatile fatty acid (P < 0.001) concentration in rumen compared with the COD. Denaturing gradient gel electrophoresis fingerprints analysis revealed a clear separation between both the diet and the fraction of rumen digesta in bacterial communities. Pyrosequencing analysis showed that the proportion of phylum Bacteroidetes in the SAID-LAB and SAID-SAB communities was less than in the COD group, whereas the SAID group had a greater percentage of Firmicutes in both the LAB and SAB libraries. UniFrac analyses and a Venn diagram revealed a large difference between the two diets in the diversity of rumen bacterial communities. Overall, our findings revealed that SARA feeding did alter the community structure of rumen liquids and rumen solids. Thus, manipulation of dietary factors, such as ratio of forage to concentrate may have the potential to alter the microbial composition of rumen liquid and rumen solid.  相似文献   

17.
A mixed inoculum of cellulolytic rumen bacteria depressed straw degradation by a mixed culture of cellulolytic fungi grown in the presence of Methanobrevibacter smithii. The inhibitory effect appeared to be caused by Ruminococcus albus strain JI and R. flavefaciens strain 007. Ruminococcus albus strain J1 also depressed straw degradation by the fungi, but R. albus strain SY3 and three strains of Bacteroides (Fibrobacter) succinogenes tested showed little or no inhibitory activity. It seems that some ruminococci show competitive or antagonistic activity towards certain rumen fungi.  相似文献   

18.
4 ruminally cannulated cows were fed a forage diet (93% hay + 7% straw) and a mixed diet (33 % hay + 7% straw + 40% barley) in a 2 x 2 crossover experimental design. In sacco degradation of forage, fibrolytic activities (polysaccharidases and glycosidases) of the solid-associated bacteria (SAB), and distribution of the 3 main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens) were determined for both diets. Barley supplementation decreased the hay degradation rate and mainly the polysaccharidase activities of the SAB (30% on average). The sum of rRNA of the 3 cellulolytic bacterial species represented on average 17% of the total bacterial signal and R. albus was the dominant cellulolytic bacterial species of the 3 studied. Barley supplementation did not modify the proportion of the 3 cellulolytic bacteria attached to plant particles. The negative effect of barley on the ruminal hay degradation rate is due to a decrease in fibrolytic activity of the SAB, and not to a modification of the balance of the three cellulolytic bacterial species examined.  相似文献   

19.
It is thought that monensin increases the efficiency of feed utilization by cattle by altering the rumen fermentation. We studied the effect of monensin and the related ionophore antibiotic lasalocid-sodium (Hoffman-LaRoche) on the growth of methanogenic and rumen saccharolytic bacteria in a complex medium containing rumen fluid. Ruminococcus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens were inhibited by 2.5 μg of monensin or lasalocid per ml. Growth of Bacteroides succinogenes and Bacteroides ruminicola was delayed by 2.5 μg of monensin or lasalocid per ml. Populations of B. succinogenes and B. ruminicola that were resistant to 20 μg of either drug per ml were rapidly selected by growth in the presence of each drug at 5.0 μg/ml. Selenomonas ruminantium was insensitive to 40 μg of monensin or lasalocid per ml. Either antibiotic (10 μg/ml) inhibited Methanobacterium MOH, Methanobacterium formicicum, and Methanosarcina barkeri MS. Methanobacterium ruminantium PS was insensitive to 40 μg of monensin or 20 μg of lasalocid per ml. The methanogenic strain 442 was insensitive to 40 μg of monensin but sensitive to 10 μg of lasalocid per ml. The results suggest that monensin or lasalocid acts in the rumen by selecting for succinate-forming Bacteroides and for S. ruminantium, a propionate producer that decarboxylates succinate to propionate. The selection could lead to an increase in rumen propionate formation. Selection against H2 and formate producers, e.g. R. albus, R. flavefaciens, and B. fibrisolvens, could lead to a depression of methane production in the rumen.  相似文献   

20.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号