首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a global approach combining fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET), we address the behavior in living cells of the peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors involved in lipid and glucose metabolism, inflammation control, and wound healing. We first demonstrate that unlike several other nuclear receptors, PPARs do not form speckles upon ligand activation. The subnuclear structures that may be observed under some experimental conditions result from overexpression of the protein and our immunolabeling experiments suggest that these structures are subjected to degradation by the proteasome. Interestingly and in contrast to a general assumption, PPARs readily heterodimerize with retinoid X receptor (RXR) in the absence of ligand in living cells. PPAR diffusion coefficients indicate that all the receptors are engaged in complexes of very high molecular masses and/or interact with relatively immobile nuclear components. PPARs are not immobilized by ligand binding. However, they exhibit a ligand-induced reduction of mobility, probably due to enhanced interactions with cofactors and/or chromatin. Our study draws attention to the limitations and pitfalls of fluorescent chimera imaging and demonstrates the usefulness of the combination of FCS, FRAP, and FRET to assess the behavior of nuclear receptors and their mode of action in living cells.  相似文献   

2.
3.
4.
5.
The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate that LXR-RXR and PPARα-RXR bind to degenerate response elements in a mutually exclusive manner. Together, our findings suggest extensive and unexpected cross talk between hepatic LXR and PPARα at the level of binding to shared genomic sites.  相似文献   

6.
Retinoid X receptor (RXR) agonists are candidate agents for the treatment of metabolic syndrome and type 2 diabetes via activation of peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR-heterodimers, which control lipid and glucose metabolism. Reporter gene assays or binding assays with radiolabeled compounds are available for RXR ligand screening, but are unsuitable for high-throughput screening. Therefore, as a first step towards stabilizing a fluorescence polarization (FP) assay system for high-throughput RXR ligand screening, we synthesized fluorescent RXR ligands by modification of the lipophilic domain of RXR ligands with a carbostyril fluorophore, and selected the fluorescent RXR agonist 6-[ethyl(1-isobutyl-2-oxo-4-trifluoromethyl-1,2-dihydroquinolin-7-yl)amino]nicotinic acid 8d for further characterization. Compound 8d showed FP in the presence of RXR and the FP was decreased in the presence of the RXR agonist LGD1069 (2). This compound should be a lead compound for use in high-throughput assay systems for screening RXR ligands.  相似文献   

7.
Progesterone receptor (PR), a member of the nuclear receptor superfamily, is a key regulator of several processes in reproductive function. We have studied the dynamics of the interaction of PR with a natural target promoter in living cells through the use of fluorescence recovery after photobleaching (FRAP) analysis and also have characterized the dynamics of the interaction of PR with the mouse mammary tumor virus (MMTV) promoter reconstituted into chromatin in vitro. In photobleaching experiments, PR in the presence of the agonist R5020 exhibits rapid exchange with the MMTV promoter in living cells. Two PR antagonists, RU486 and ZK98299, have opposite effects on receptor dynamics in vivo. In the presence of RU486, PR binds to the promoter and is exchanged more slowly than the agonist-activated receptor. In contrast, PR bound to ZK98299 is not localized to the promoter and exhibits higher mobility in the nucleoplasm than the agonist-bound receptor. Significantly, PR bound to R5020 or RU486 can recruit the SWI/SNF chromatin remodeling complex to the promoter, but PR activated with ZK98299 cannot. Furthermore, we found ligand-specific active displacement of PR from the MMTV promoter during chromatin remodeling in vitro and conclude that the interaction of PR with chromatin is highly dynamic both in vivo and in vitro. We propose that factor displacement during chromatin remodeling is an important component of receptor mobility and that ligand-specific interactions with remodeling complexes can strongly influence receptor nuclear dynamics and rates of exchange with chromatin in living cells.  相似文献   

8.
Retinoic X receptor (RXR) is a master nuclear receptor in the processes of cell development and homeostasis. Unliganded RXR exists in an autorepressed tetramer, and agonists can induce RXR dimerization and coactivator recruitment for activation. However, the molecular mechanisms involving the corepressor recruitment and antagonist-mediated repression of RXR are still elusive. Here we report the crystal structure of RXRα ligand-binding domain (LBD) complexed with silencing mediator for retinoid and thyroid hormone receptors (SMRT) corepressor motif. As the first structural report on the unliganded nuclear receptor bound to the corepressor motif, RXRαLBD-SMRT exhibits a significant structural rearrangement, compared with apoRXRαLBD tetramer. To elucidate further the molecular determinants for RXR repression by its antagonist, we also determine the crystal structure of RXRαLBD-SMRT complexed with the identified antagonist rhein. In the structure, two rhein molecules and two SMRT peptides are in the RXRαLBD tetramer, different from the case in RXRαLBD-SMRT structure, where four SMRT peptides bind to RXRαLBD tetramer. It seems that rhein induces a displacement of SMRT motif by activation function 2 (AF-2) motif binding to the receptor. Combining our current work with the published results, structural superposition of RXRαLBDs in different states reveals that RXR uses an overlapped binding site for coactivator, corepressor, and AF-2 motifs, whereas the AF-2 motif adopts different conformations for agonist or antagonist interaction and coactivator or corepressor recruitment. Taken together, we thus propose a molecular model of RXR repression on the tetramer.  相似文献   

9.
Phenobarbital induction of CYP2B genes is mediated by a complex phenobarbital-responsive enhancer (PBRU), which contains a binding site for nuclear factor-1 (NF-1) flanked by two DR-4 nuclear receptor (NR) binding sites for a heterodimer of constitutive androstane receptor (CAR) and retinoid X receptor (RXR). To examine potential interactions between NF-1 and CAR/RXR, binding of purified recombinant proteins to DNA, or to chromatin assembled using Drosophila embryo extract, was examined. NF-1 and CAR/RXR bound simultaneously and independently to the overlapping NF-1 and NR-1 sites; binding of CAR/RXR to the NR-2 site was modestly increased by NF-1 binding; and CAR/RXR bound to a new site in the PBRU region, designated NR-3. Assembly of plasmid DNA into chromatin using Drosophila extract resulted in linearly phased nucleosomes in the PBRU region. The apparent binding affinity of NF-1 was increased by about 10-fold in assembled chromatin compared with DNA, whereas CAR/RXR binding was decreased. As observed for DNA, however, simultaneous, largely independent, binding to the NF-1 and NR sites was observed. CAR-mediated transactivation of the PBRU in cultured cells of hepatic origin was inhibited by mutations in the NF-1 site, and overexpression of NF-1 increased CAR transactivation in HepG2 cells. These studies demonstrate that NF-1 and CAR/RXR can both bind to the PBRU at the same time and that chromatin assembly increases NF-1 binding, which is consistent with previous in vivo footprinting studies in which the NF-1 site was occupied in untreated animals and the NF-1 and flanking NR sites were occupied after phenobarbital treatment. CAR-mediated trans-activation of the PBRU was increased by NF-1, analogous to NF-1 effects on phenobarbital induction in previous transient transfection studies and consistent with mediation of phenobarbital induction by CAR.  相似文献   

10.
Quantitative characterization of protein interactions under physiological conditions is vital for systems biology. Fluorescence photobleaching/activation experiments of GFP-tagged proteins are frequently used for this purpose, but robust analysis methods to extract physicochemical parameters from such data are lacking. Here, we implemented a reaction-diffusion model to determine the contributions of protein interaction and diffusion on fluorescence redistribution. The model was validated and applied to five chromatin-interacting proteins probed by photoactivation in living cells. We found that very transient interactions are common for chromatin proteins. Their observed mobility was limited by the amount of free protein available for diffusion but not by the short residence time of the bound proteins. Individual proteins thus locally scan chromatin for binding sites, rather than diffusing globally before rebinding at random nuclear positions. By taking the real cellular geometry and the inhomogeneous distribution of binding sites into account, our model provides a general framework to analyze the mobility of fluorescently tagged factors. Furthermore, it defines the experimental limitations of fluorescence perturbation experiments and highlights the need for complementary methods to measure transient biochemical interactions in living cells.  相似文献   

11.
12.
13.
Many members of the thyroid hormone/retinoid receptor subfamily (type II nuclear receptors) function as heterodimers with the retinoid X receptor (RXR). In heterodimers which are referred to as permissive, such as peroxisome proliferator activated receptor/RXR, both partners can bind cognate ligands and elicit ligand-dependent transactivation. In contrast, the thyroid hormone receptor (TR)/RXR heterodimer is believed to be nonpermissive, where RXR is thought to be incapable of ligand binding and is often referred to as a silent partner. In this report, we used a sensitive derepression assay system that we developed previously to reexamine the TR/RXR interrelationship. We provide functional evidence suggesting that in a TR/RXR heterodimer, the RXR component can bind its ligand in vivo. Ligand binding by RXR does not appear to directly activate the TR/RXR heterodimer; instead, it leads to a (at least transient or dynamic) dissociation of a cellular inhibitor(s)/corepressor(s) from its TR partner and thus may serve to modulate unliganded TR-mediated repression and/or liganded TR-mediated activation. Our results argue against the current silent-partner model for RXR in the TR/RXR heterodimer and reveal an unexpected aspect of cross regulation between TR and RXR.  相似文献   

14.
The C-terminal activation function-2 (AF-2) helix plays a crucial role in retinoid X receptor alpha (RXRα)-mediated gene expression. Here, we report a nuclear magnetic resonance (NMR) study of the RXRα ligand-binding domain complexed with 9-cis-retinoic acid and a glucocorticoid receptor-interacting protein 1 peptide. The AF-2 helix and most of the C-terminal residues were undetectable due to a severe line-broadening effect. Due to its outstanding signal-to-noise ratio, the C-terminus residue, threonine 462 (T462) exhibited two distinct crosspeaks during peptide titration, suggesting that peptide binding was in a slow exchange regime on the chemical shift timescale. Consistently, the Kd derived from T462 intensity decay agreed with that derived from isothermal titration calorimetry. Furthermore, the exchange contribution to the 15N transverse relaxation rate was measurable in either T462 or the bound peptide. These results suggest that T462 is a sensor for coactivator binding and is a potential probe for AF-2 helix mobility.  相似文献   

15.
Recent studies indicate that most nuclear proteins, including histone H1 and HMG are highly mobile and their interaction with chromatin is transient. These findings suggest that the structure of chromatin is dynamic and the protein composition at any particular chromatin site is not fixed. Here we discuss how the dynamic behavior of the nucleosome binding HMGN proteins affects the structure and function of chromatin. The high intranuclear mobility of HMGN insures adequate supply of protein throughout the nucleus and serves to target these proteins to their binding sites. Transient interactions of the proteins with nucleosomes destabilize the higher order chromatin, enhance the access to nucleosomal DNA, and impart flexibility to the chromatin fiber. While roaming the nucleus, the HMGN proteins encounter binding partners and form metastable multiprotein complexes, which modulate their chromatin interactions. Studies with HMGN proteins underscore the important role of protein dynamics in chromatin function.  相似文献   

16.
17.
To investigate the relationships between the loci expressing functions of estrogen receptor (ER)alpha and that of ERbeta, we analyzed the subnuclear distribution of ERalpha and ERbeta in response to ligand in single living cells using fusion proteins labeled with different spectral variants of green fluorescent protein. Upon activation with ligand treatment, fluorescent protein-tagged (FP)-ERbeta redistributed from a diffuse to discrete pattern within the nucleus, showing a similar time course as FP-ERalpha, and colocalized with FP-ERalpha in the same discrete cluster. Analysis using deletion mutants of ERalpha suggested that the ligand-dependent redistribution of ERalpha might occur through a large part of the receptor including at least the latter part of activation function (AF)-1, the DNA binding domain, nuclear matrix binding domain, and AF-2/ligand binding domain. In addition, a single AF-1 region within ERalpha homodimer, or a single DNA binding domain as well as AF-1 region within the ERalpha/ERbeta heterodimer, could be sufficient for the cluster formation. More than half of the discrete clusters of FP-ERalpha and FP-ERbeta were colocalized with hyperacetylated histone H4 and a component of the chromatin remodeling complex, Brg-1, indicating that ERs clusters might be involved in structural changes of chromatin.  相似文献   

18.
We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.  相似文献   

19.
The nuclear receptor retinoid X receptor (RXR) functions potently in the regulation of homeostasis and cell development, while rexinoids as RXR agonists have proved their therapeutic potential in the treatment of metabolic diseases and cancer. Here, the natural product bigelovin was identified as a selective RXRα agonist. Interestingly, this compound could not transactivate RXRα:RXRα homodimer but could enhance the transactivation of RXRα:peroxisome proliferator-activated receptor γ heterodimer and repress that of RXRα:liver X receptor (LXR) α heterodimer, while it had no effects on RXRα:farnesoid X receptor heterodimer. Considering that the effective role of LXR response element involved transactivation of sterol regulatory element-binding protein-1c mediated by RXRα:LXRα in triglyceride elevation, such LXR response element repressing by bigelovin has obviously addressed its potency for further research. Moreover, our determined crystal structure of the bigelovin-activated RXRα ligand-binding domain with the coactivator human steroid receptor coactivator-1 peptide revealed that bigelovin adopted a distinct binding mode. Compared with the known RXR ligands, bigelovin lacks the acidic moiety in structure, which indicated that the acidic moiety rendered little effects on RXR activation. Our results have thereby provided new insights into the structure-based selective rexinoids design with bigelovin as a potential lead compound.  相似文献   

20.
The induction of CYP2B gene expression by phenobarbital (PB) is mediated by the translocation of the constitutive androstane receptor (CAR) from the cytoplasm to the nucleus. The CAR/RXR heterodimer binds to two DR-4 sites in a complex phenobarbital responsive unit (PBRU) in the CYP2B gene. The short heterodimer partner (SHP), an orphan nuclear receptor that lacks a conventional DNA binding domain, was initially identified by its interaction with CAR. We have examined the role of SHP in CAR-mediated transactivation of the CYP2B gene. Coexpression of SHP inhibited the transactivation of the CYP2B gene by CAR in cultured hepatoma cells and the p160 coactivator GRIP1 reversed the inhibition. The interaction of CAR with SHP was confirmed by GST pulldown experiments. SHP did not block the binding of either CAR/RXR to the PBRU or binding of GRIP1 to the CAR/RXR complex in gel mobility shift assays, but slightly increased CAR/RXR binding and slightly altered the mobility of the CAR/RXR/GRIP1 complex, suggesting an interaction of SHP with these complexes. The presence of SHP in the complexes, however, could not be detected in an antibody supershift assay. Recombinant corepressors mSin3A, SMRT, and HDAC1, but not NCoR1, interacted with GST-SHP but each of these corepressors in liver nuclear extracts bound to GST-SHP. SMRT and NCoR1 inhibited CAR-mediated activation independent of SHP, but mSin3A and HDAC1 had little effect alone, and were additive with SHP. These studies demonstrate that SHP does not inhibit CAR-mediated trans-activation by interfering with DNA binding or by competition with GRIP1. Instead, SHP may either inhibit recruitment of other coactivators by GRIP1 or actively recruit corepressors directly to the CAR/RXR/PBRU complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号