首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in σs, were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.  相似文献   

2.
Ionizing radiation effectively inactivates Escherichia coli O157:H7, but the efficacy of the process against biofilm cells versus that against free-living planktonic cells is not well documented. The radiation sensitivity of planktonic or biofilm cells was determined for three isolates of E. coli O157:H7 (C9490, ATCC 35150, and ATCC 43894). Biofilms were formed on sterile glass slides incubated at 37°C for either 24 h, 48 h, or 72 h. The biofilm and planktonic cultures were gamma irradiated at doses ranging from 0.0 (control) to 1.5 kGy. The dose of radiation value required to reduce the population by 90% (D10) was calculated for each isolate, culture, and maturity based on viable populations at each radiation dose. For each of the times sampled, the D10 values of isolate 43894 planktonic cells (0.454 to 0.479 kGy) were significantly (P < 0.05) higher than those observed for biofilm cells (0.381 to 0.385 kGy), indicating a significantly increased sensitivity to irradiation for cells in the biofilm habitat. At the 24-h sampling time, isolate C9490 showed a similar pattern, in which the D10 values of planktonic cells (0.653 kGy) were significantly higher than those for biofilm cells (0.479 kGy), while isolate 35150 showed the reverse, with D10 values of planktonic cells (0.396 kGy) significantly lower than those for biofilm cells (0.526 kGy). At the 48-h and 72-h sampling times, there were no differences in radiation sensitivities based on biofilm habitat for C9490 or 35150. Biofilm-associated cells, therefore, show a response to irradiation which can differ from that of planktonic counterparts, depending on the isolate and the culture maturity. Culture maturity had a more significant influence on the irradiation efficacy of planktonic cells but not on biofilm-associated cells of E. coli O157:H7.  相似文献   

3.
Aims: Rapid detection and selective isolation of E. coli O157:H7 strains have been difficult owing to the potential interference from background microflora present in high background food matrices. To help selectively isolate E. coli O157H7 strains, a useful plating technique that involved acidifying the cultures to pH 2 was evaluated with a large number of E. coli O157:H7 strains to ensure response to treatment was consistent across strains. Methods and Results: Escherichia coli O157, 46 strains including ATCC 35150, were acidified to pH 2 following enrichment and plated onto Tryptic Soy Agar + 0·6% Yeast Extract (TSA‐YE) and Sorbitol MacConkey Agar + cefixime and tellurite (CT‐SMAC). Samples were enumerated and modest decreases in plate counts were observed on TSA‐YE media, with a greater reduction observed on CT‐SMAC. Conclusions: The acid‐resistant character of E. coli O157:H7 is a consistent trait and may be used for improved isolation of the organism from mixed cultures. Significance and Impact of the Study: There was little difference observed between the commonly used laboratory strain E. coli O157:H7 35150 and 45 other strains of E. coli O157 when subjected to acidifying conditions prior to plating, demonstrating that an acid rinse procedure was equally effective across a wide variety of E. coli O157 strains and broadly applicable for isolating unknown strains from food samples.  相似文献   

4.
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in sigma(s), were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.  相似文献   

5.
A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided.  相似文献   

6.
Escherichia coli O157:H7 (strains ATCC 43895 and FO46) became nonculturable in sterile, distilled, deionized water or after exposure to chlorine. Recovery of nonculturable E. coli O157:H7 was examined by in vitro and in vivo methods. The decline in culturability of starved E. coli O157:H7 was measured by plate count on rich medium. Recovery in vitro of nonculturable cells was conducted with media amended with catalase or sodium pyruvate; however, there was no apparent increase over culturable cell counts on amended versus nonamended media. Although nonculturable E. coli O157:H7 did not recover under in vitro conditions, a mouse model was used to determine if in vivo conditions would provide sufficient conditions for recovery of nonculturable E. coli O157:H7. In separate studies, mice were orally challenged with starvation-induced nonculturable cells (FO46) or chlorine-induced nonculturable cells (43895 and FO46). Passage through the mouse gastrointestinal tract had no effect on recovery of nonculturable (starvation or chlorine induced) E. coli O157:H7 (43895 or FO46), based on analysis of fecal samples. Mouse kidneys were assayed for the presence of Shiga toxin using the Vero cell assay. Differences in cytotoxicity towards Vero cells from kidney samples of mice receiving nonculturable cells and control mice were not significant, suggesting a loss of virulence.  相似文献   

7.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 ± 0.1) or in water (pH 7.2 ± 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25°C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4°C and lowest at 25°C. The pathogen survived without growth in water washings at 4 and 10°C, while it grew by 0.8 to 2.7 log cycles at 15 and 25°C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10°C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25°C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15°C > 10°C > 4°C, while at 25°C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15°C may maintain a higher acid resistance than when acid habituated at 4°C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

8.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

9.
10.
The influence of adaptation to pH (from pH 5.0 to 9.0) on membrane lipid composition, verotoxin concentration, and resistance to acidic conditions in simulated gastric fluid (SGF) (pH 1.5, 37°C) was determined for Escherichia coli O157:H7 (HEC, ATCC 43895), an rpoS-deficient mutant of ATCC 43895 (HEC-RM, FRIK 816-3), and nonpathogenic E. coli (NPEC, ATCC 25922). Regardless of the strain, D values (in SGF) of acid-adapted cells were higher than those of non-acid-adapted cells, with HEC adapted at pH 5.0 having the greatest D value, i.e., 25.6 min. Acid adaptation increased the amounts of palmitic acid (C16:0) and decreased cis-vaccenic acid (C18:1ω7c) in the membrane lipids of all strains. The ratio of cis-vaccenic acid to palmitic acid increased at acidic pH, causing a decrease in membrane fluidity. HEC adapted to pH 8.3 and HEC-RM adapted to pH 7.3 exhibited the greatest verotoxin concentrations (2,470 and 1,460 ng/ml, respectively) at approximately 108 CFU/ml. In addition, the ratio of extracellular to intracellular verotoxin concentration decreased at acidic pH, possibly due to the decrease of membrane fluidity. These results suggest that while the rpoS gene does not influence acid resistance in acid-adapted cells it does confer decreased membrane fluidity, which may increase acid resistance and decrease verotoxin secretion.  相似文献   

11.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log10 CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 μg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12°C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

12.
The effects of proline and caffeic acid on the survival of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strain ATCC 43895 in a model apple juice medium were studied. It is hypothesized that the inhibitory effect of caffeic acid may explain why almost all outbreaks of STEC O157:H7 infections linked to apple juice or cider have occurred in October or November.  相似文献   

13.
Wu G  Ding J  Li H  Li L  Zhao R  Shen Z  Fan X  Xi T 《Current microbiology》2008,57(6):552-557
This study analyzes the in vitro effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332. Thanatin and s-thanatin were synthesized by the solid-phase method using a model 432A synthesizer. The bacterial strains tested included two antibiotic-susceptible strains of Escherichia coli ATCC25922 and B. subtilis ATCC21332. Susceptibility determinations were carried out either in a variety of cation concentrations or in pH conditions from pH 5 to pH 8. NaCl or KCl was added to the media to final concentrations of 0, 10, 50, 100, 200, and 500 mM, whereas CaCl2 and MgCl2 were added to the media to final concentrations of 0, 1, 2, 5, 10, and 20 mM. The antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332 decreased, as indicated by the increasing minimal inhibitory concentrations (MICs) of both peptides with increasing concentrations of Na+/K+/Ca2+/Mg2+. Both peptides lost their activities at 500 mM Na+/K+ but retained them at 20 mM Ca2+/Mg2+. Both peptides have MICs that are not significantly different at a variety of pH levels, with the antimicrobial activity slightly higher in neutral or slightly basic media than under acidic conditions. The antimicrobial peptides thanatin and s-thanatin, which have an anti-parallel β-sheet constrained by disulfide bonds, were salt sensitive against both Gram-positive and Gram-negative pathogens in vitro. Determining the reason why the thanatins are salt sensitive would be useful to provide an understanding of how thanatin and s-thanatin kill bacteria. Futher investigation of the antimicrobial properties of these peptides is warranted. G. Wu and J. Ding contributed equally to this article.  相似文献   

14.
This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.  相似文献   

15.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

16.
Ionizing radiation effectively inactivates Escherichia coli O157:H7, but the efficacy of the process against biofilm cells versus that against free-living planktonic cells is not well documented. The radiation sensitivity of planktonic or biofilm cells was determined for three isolates of E. coli O157:H7 (C9490, ATCC 35150, and ATCC 43894). Biofilms were formed on sterile glass slides incubated at 37 degrees C for either 24 h, 48 h, or 72 h. The biofilm and planktonic cultures were gamma irradiated at doses ranging from 0.0 (control) to 1.5 kGy. The dose of radiation value required to reduce the population by 90% (D10) was calculated for each isolate, culture, and maturity based on viable populations at each radiation dose. For each of the times sampled, the D10 values of isolate 43894 planktonic cells (0.454 to 0.479 kGy) were significantly (P<0.05) higher than those observed for biofilm cells (0.381 to 0.385 kGy), indicating a significantly increased sensitivity to irradiation for cells in the biofilm habitat. At the 24-h sampling time, isolate C9490 showed a similar pattern, in which the D10 values of planktonic cells (0.653 kGy) were significantly higher than those for biofilm cells (0.479 kGy), while isolate 35150 showed the reverse, with D10 values of planktonic cells (0.396 kGy) significantly lower than those for biofilm cells (0.526 kGy). At the 48-h and 72-h sampling times, there were no differences in radiation sensitivities based on biofilm habitat for C9490 or 35150. Biofilm-associated cells, therefore, show a response to irradiation which can differ from that of planktonic counterparts, depending on the isolate and the culture maturity. Culture maturity had a more significant influence on the irradiation efficacy of planktonic cells but not on biofilm-associated cells of E. coli O157:H7.  相似文献   

17.
Optimization of conditions for outdoor production of the nitrogen-fixing cyanobacterium Anabaena sp. ATCC 33047 has been pursued. In open ponds operated under semi-continuous regime biomass productivity values achieved ranged from 9 g (dry weight) m(-2) per day, in winter, to over 20 g m(-2) per day, in summer, provided that key operation parameters, including cell density, were optimized. Under these conditions the efficiency of solar energy conversion by the cells was fairly constant throughout the year, with photosynthetic efficiency values higher than 2%. The cyanobacterial biomass was rich in high-value phycobiliproteins, namely allophycocyanin and phycocyanin, for which open cultures of marine Anabaena represent a most interesting production system. The performance of Anabaena cultures operated under continuous regime in a closed tubular reactor has also been assessed outdoors, in winter. Biomass productivity values similar to those obtained in the ponds have been recorded for the closed system. Additionally, under these conditions, the cells excreted to the medium large amounts of a previously characterized exopolysaccharide, at production rates as high as 35 g m(-2) per day (1.4 g l(-1) per day). Properly operated closed cultures of this strain of Anabaena appear most suitable for outdoor mass production of valuable extracellular polysaccharides.  相似文献   

18.
Pathogenic Escherichia coli O157:H7, as well as nonpathogenic strains ATCC 11775 and ATCC 23716, grew exponentially in wounds on Golden Delicious apple fruit. The exponential growth occurred over a longer time period on fruit inoculated with a lower concentration of the bacterium than on fruit inoculated with a higher concentration. The bacterium reached the maximum population supported in the wounds regardless of the initial inoculum concentrations. Populations of E. coli O157:H7 in various concentrations of sterilized apple juice and unsterilized cider declined over time and declined more quickly in diluted juice and cider. The decline was greater in the unsterilized cider than in juice, which may have resulted from the interaction of E. coli O157:H7 with natural populations of yeasts that increased with time. Experiments on the transmission of E. coli by fruit flies, collected from a compost pile of decaying apples and peaches, were conducted with strain F-11775, a fluorescent transformant of nonpathogenic E. coli ATCC 11775. Fruit flies were easily contaminated externally and internally with E. coli F-11775 after contact with the bacterium source. The flies transmitted this bacterium to uncontaminated apple wounds, resulting in a high incidence of contaminated wounds. Populations of the bacterium in apple wounds increased significantly during the first 48 h after transmission. Further studies under commercial conditions are necessary to confirm these findings.  相似文献   

19.
In this study, the degradation of tetradecyltrimethylammonium bromide (TTAB) by freely suspended and alginate-entrapped cells from the bacteria Pseudomonas putida (P. putida) A ATCC 12633 was investigated in batch cultures. The optimal conditions to prepare beads for achieving a higher TTAB degradation rate were investigated by changing the concentration of sodium alginate, pH, temperature, agitation rate and initial concentration of TTAB. The results show that the optimal embedding conditions of calcium alginate beads are 4 % w/v of sodium alginate content and 2 × 108 cfu ml?1 of P. putida A ATCC 12633 cells that had been previously grown in rich medium. The optimal degradation process was carried out in pH 7.4 buffered medium at 30 °C on a rotary shaker at 100 rpm. After 48 h of incubation, the free cells degraded 26 mg l?1 of TTAB from an initial concentration of 50 mg l?1 TTAB. When the initial TTAB concentration was increased to 100 mg l?1, the free cells lost their degrading activity and were no longer viable. In contrast, when the cells were immobilized on alginate, they degraded 75 % of the TTAB after 24 h of incubation from an initial concentration of 330 mg l?1 of TTAB. The immobilized cells can be stored at 4 °C for 25 days without loss of viability and can be reused without losing degrading capacity for three cycles.  相似文献   

20.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号