首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

2.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

3.
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica.Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis.Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems.Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.  相似文献   

4.

Background and Aims

There is increasing evidence that suppressed bud burst and thus epicormic shoot emergence (sprouting) are controlled by water–carbohydrate supplies to entire trees and buds. This direct evidence is still lacking for oak. In other respects, recent studies focused on sessile oak, Quercus petraea, have confirmed the important constraints of sprouting by epicormic ontogeny. The main objective of this paper was thus to provide provisional confirmation of the water–carbohydrate control and direct evidence of the ontogenic constraints by bringing together results already published in separate studies on water status and distribution of carbohydrates, and on accompanying vegetation and epicormics, which also quantify epicormic ontogeny.

Methods

This paper analyses results gained from a sessile oak experiment in which part of the site was free from fairly tall, dense accompanying vegetation. This experiment was initially focused on stand water status and more recently on the carbohydrate distribution of dominant trees. External observations of the epicormic composition and internal observations with X-ray computer tomography were undertaken on 60 and six trees, respectively.

Key Results

Sprouting was more intense in the part of the stand free from accompanying vegetation and on upper trunk segments. A clear effect of epicormic ontogeny was demonstrated as well: the more epicormics a trunk segment bears, the more chances it had to bear sprouts.

Conclusions

These results indirectly infer water–carbohydrate control and show direct evidence of constraints by epicormic ontogeny. These results have far-reaching consequences related to the quantification of all functions fulfilled by any type of epicormic structure in any part of the tree.  相似文献   

5.
Root-knot nematodes (RKN) are the most serious plant parasitic nematodes having a broad host range exceeding 2,000 plant species. Quercus brantii Lindl. and Q. infectoria Oliv are the most important woody species of Zagros forests in west of Iran where favors sub-Mediterranean climate. National Botanical Garden of Iran (NBGI) is scheduled to be the basic center for research and education of botany in Iran. This garden, located in west of Tehran, was established in 1968 with an area of about 150 ha at altitude of 1,320 m. The Zagros collection has about 3-ha area and it has been designed for showing a small pattern of natural Zagros forests in west of Iran. Brant’s oak (Q. brantii) and oak manna tree (Q. infectoria) are the main woody species in Zagros collection, which have been planted in 1989. A nematological survey on Zagros forest collection in NBGI revealed heavily infection of 24-yr-old Q. brantii and Q. infectoria to RKN, Meloidogyne hapla. The roots contained prominent galls along with egg sac on the surface of each gall. The galls were relatively small and in some parts of root several galls were conjugated, and all galls contained large transparent egg masses. The identification of M. hapla was confirmed by morphological and morphometric characters and amplification of D2-D3 expansion segments of 28S rRNA gene. The obtained sequences of large-subunit rRNA gene from M. hapla was submitted to the GenBank database under the accession number KP319025. The sequence was compared with those of M. hapla deposited in GenBank using the BLAST homology search program and showed 99% similarity with those KJ755183, GQ130139, DQ328685, and KJ645428. The second stage juveniles of M. hapla isolated from Brant’s oak (Q. Brantii) showed the following morphometric characters: (n = 12), L = 394 ± 39.3 (348 to 450) µm; a = 30.9 ± 4 (24.4 to 37.6); b = 4.6 ± 0.44 (4 to 5.1); b΄ = 3.3 ± 0.3 (2.7 to 3.7), c = 8.0 ± 1 (6.2 to 10.3), ć = 5.3 ± 0.8 (3.5 to 6.3); Stylet = 12.1 ± 0.8 (11 to 13) µm; Tail = 50 ± 5.6 (42 to 57) µm; Hyaline 15 ± 1.8 (12 to 18) µm. Oak manna, Q. infectoria population of second stage juveniles clearly possessed short body length and consequently other morphometric features were less than those determined for Q. brantii population, and these features were: (n = 12), L = 359.0 ± 17.3 (319 to 372) µm; a = 28.6 ± 3 (22.8 to 31); b = 5.0 ± 0.3 (4.8 to 5.2); b΄ = 3.3 ± 0.2 (3 to 3.6), c = 8.1 ± 0.5 (7.4 to 8.8), ć = 4.7 ± 0.5 (3.9 to 5.2); Stylet = 11.4 ± 0.7 (10 to 12) µm; Tail = 44 ± 1.8 (42 to 47) µm; Hyaline 12 ± 1.7 (10 to 15) µm. To date two species of Meloidogyne, M. querciana Golden, 1979 and M. christiei Golden and Kaplan, 1986 have been reported to parasitize oaks (Quercus spp.) from the United States of America. M. querciana was found on pin oak Quercus palustris in Virginia. The oak RKN infected pine oak, red oak, and American chestnut heavily in greenhouse tests (Golden, 1979). The other species M. christiei was described from turkey oak and Q. laevis in Florida, which has monospecific host range (Golden and Kaplan, 1986). Both of these RKN species seem to be restricted to the United States of America and have not been reported from other place. According to our knowledge this is the first report of occurrence of M. hapla on Q. brantii and Q. infectoria in the world. This study includes these two oak species to the host range of RKN, M. hapla for the world and expands the information of RKN, M. hapla host ranges on oaks.  相似文献   

6.

Background and Aims

Sexual reproduction is one of the most important moments in a life cycle, determining the genetic composition of individual offspring. Controlled pollination experiments often show high variation in the mating system at the individual level, suggesting a persistence of individual variation in natural populations. Individual variation in mating patterns may have significant adaptive implications for a population and for the entire species. Nevertheless, field data rarely address individual differences in mating patterns, focusing rather on averages. This study aimed to quantify individual variation in the different components of mating patterns.

Methods

Microsatellite data were used from 421 adult trees and 1911 seeds, structured in 72 half-sib families collected in a single mixed stand of Quercus robur and Q. petraea in northern Poland. Using a Bayesian approach, mating patterns were investigated, taking into account pollen dispersal, male fecundity, possible hybridization and heterogeneity in immigrant pollen pools.

Key Results

Pollen dispersal followed a heavy-tailed distribution (283 m on average). In spite of high pollen mobility, immigrant pollen pools showed strong genetic structuring among mothers. At the individual level, immigrant pollen pools showed highly variable divergence rates, revealing that sources of immigrant pollen can vary greatly among particular trees. Within the stand, the distribution of male fecundity appeared highly skewed, with a small number of dominant males, resulting in a ratio of census to effective density of pollen donors of 5·3. Male fecundity was not correlated with tree diameter but showed strong cline-like spatial variation. This pattern can be attributed to environmental variation. Quercus petraea revealed a greater preference (74 %) towards intraspecific mating than Q. robur (36 %), although mating preferences varied among trees.

Conclusions

Mating patterns can reveal great variation among individuals, even within a single even-age stand. The results show that trees can mate assortatively, with little respect for spatial proximity. Such selective mating may be a result of variable combining compatibility among trees due to genetic and/or environmental factors.  相似文献   

7.
Background and Aims Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Methods Gibberellic acid (GA(3)), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Ro) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. Key Results It was found that GA(3) stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA(3) stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. Conclusions The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus.  相似文献   

8.
Meloidogyne christiei isolated from turkey oak, Quercus laevies, from the type locality in Florida was characterized using isozyme profiles and ribosomal and mitochondrial gene sequences. The phenotype N1a detected from a single egg-laying female of M. christiei showed one very strong band of malate dehydrogenase (MDH) activity; however, no esterase (EST) activity was identified from macerate of one or even 20 females per well. Phylogenetic relationships within the genus Meloidogyne as inferred from Bayesian analysis of partial 18S ribosomal RNA (rRNA), D2-D3 of 28S rRNA, internal transcribed spacer (ITS) rRNA, and cytochrome oxidase subunit II (COII)-16S rRNA of mitochondrial DNA (mtDNA) gene fragments showed that M. christiei formed a separate lineage within the crown group of Meloidogyne and its relationships with any of three Meloidogyne clades were not resolved.  相似文献   

9.
蒙古栎(Quercus mongolica)是中国东北地区天然次生林重要组成树种, 研究该树种幼苗有机碳积累及碳库容对未来气候变化的响应, 可为预测未来气候变暖情景下蒙古栎林的天然更新及幼苗的培育提供科学参考。该文旨在探讨CO2浓度和温度升高综合作用对蒙古栎幼苗非结构性碳水化合物(NSC)积累及其分配的影响。实验环境条件用人工气候箱控制, 控制条件如下: 1) CO2浓度倍增(700 μmol·mol-1), 温度升高4 ℃处理(HCHT); 2) CO2浓度正常(400 μmol·mol-1), 温度升高4 ℃处理(HT); 3) CO2浓度和温度均正常, 即对照组(CK); 每个气候箱幼苗分别在3种氮素水平下生长: N2 (15 mmol·L-1, 高氮), N1 (7.5 mmol·L-1, 正常供氮)和N0 (不施氮), 一共为9个处理。研究结果表明, 1) HCHT共同作用对NSC积累无促进作用, 但改变了植物各器官中NSC的分配比例, 叶片中可溶性糖和淀粉的积累明显增加, HCHT下N2水平有利于NSC的积累。2) HT明显影响了蒙古栎一年生幼苗NCS的积累和分配。在N2水平下, HT明显促进NSC的积累, 并增加了在主根中的分配比例。3)植株各器官可溶性糖含量的动态变化因处理不同而异。主根淀粉含量随时间逐渐增加, 而细根淀粉含量随时间逐渐减少。在未来气候变暖的情况下, 土壤中大量的氮供给, 可能将促进蒙古栎幼苗的生长、增加其碳库容和抵御不良环境的能力, 进而提高其天然更新潜力。  相似文献   

10.

Background and Aims

The pattern of callose deposition was followed in developing stomata of the fern Asplenium nidus to investigate the role of this polysaccharide in guard cell (GC) wall differentiation and stomatal pore formation.

Methods

Callose was localized by aniline blue staining and immunolabelling using an antibody against (1 → 3)-β-d-glucan. The study was carried out in stomata of untreated material as well as of material treated with: (1) 2-deoxy-d-glucose (2-DDG) or tunicamycin, which inhibit callose synthesis; (2) coumarin or 2,6-dichlorobenzonitrile (dichlobenil), which block cellulose synthesis; (3) cyclopiazonic acid (CPA), which disturbs cytoplasmic Ca2+ homeostasis; and (d) cytochalasin B or oryzalin, which disintegrate actin filaments and microtubules, respectively.

Results

In post-cytokinetic stomata significant amounts of callose persisted in the nascent ventral wall. Callose then began degrading from the mid-region of the ventral wall towards its periphery, a process which kept pace with the formation of an ‘internal stomatal pore’ by local separation of the partner plasmalemmata. In differentiating GCs, callose was consistently localized in the developing cell-wall thickenings. In 2-DDG-, tunicamycin- and CPA-affected stomata, callose deposition and internal stomatal pore formation were inhibited. The affected ventral walls and GC wall thickenings contained membranous elements. Stomata recovering from the above treatments formed a stomatal pore by a mechanism different from that in untreated stomata. After coumarin or dichlobenil treatment, callose was retained in the nascent ventral wall for longer than in control stomata, while internal stomatal pore formation was blocked. Actin filament disintegration inhibited internal stomatal pore formation, without any effect on callose deposition.

Conclusions

In A. nidus stomata the time and pattern of callose deposition and degradation play an essential role in internal stomatal pore formation, and callose participates in deposition of the local GC wall thickenings.  相似文献   

11.
Bo Xu  Shen Yu 《Annals of botany》2013,111(6):1189-1195

Background and Aims

Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings.

Methods

A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined.

Key Results

Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd.

Conclusions

Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of wetland plants.  相似文献   

12.
Michel Sartori 《ZooKeys》2014,(420):19-39
Three species belonging to the genus Thalerosphyrus Eaton, 1881 are reported from Java and Sumatra. The nymphs of Th. determinatus (Walker, 1853) from Java, Th. sinuosus (Navás, 1933) from Java and Sumatra and Th. lamuriensis Sartori, 2014 from Sumatra are redescribed. The egg morphology of the three species is also presented for the first time. A key to the nymphs is proposed. General considerations on the composition of the genus Thalerosphyrus in the Oriental Realm are given. The distribution of the genus is greatly expended, and currently ranges over the Himalaya and Sumbawa in the Sunda Islands.  相似文献   

13.
Joachim Buchta 《BBA》2007,1767(6):565-574
The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 μs to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 μs (at 20 °C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 °C, pH 6.4). In the second part of the study, the temperature dependence (− 2.7 to 27.5 °C) of the rate constant of dioxygen formation (600/s at 20 °C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.  相似文献   

14.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

15.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

16.
To characterise the stomata of six temperate deciduous tree species, sets of stomatal sensitivities to all the most important environmental factors were measured. To compare the importance of abscisic acid (ABA) in the different stomatal responses, the effect of exogenous ABA on all the stomatal sensitivities was determined.Almost all the stomatal sensitivities: the sensitivity to a decrease in leaf water potential, air humidity, CO2 concentration ([CO2]) and light intensity, and to an increase in [CO2] and light intensity were the highest in the slow-growing species, and the lowest in the fast-growing species. Drought increased the sensitivity to the environmental changes that induce a decrease in the stomatal conductance, and decreased the sensitivity to the changes that induce an increase in this conductance. The sensitivities of the slow-growers were most strongly affected by drought and ABA. Therefore the success of the slow-growers in their ecological niches can be based on the highly sensitive and strictly regulated responses of their stomata. The fast-growers had the highest sensitivity to an increase in leaf water potential and this sensitivity was sharply reduced by drought and ABA. Thus, the dominance of the trees in riparian areas can be based on the ability of their stomata to quickly reach high conductance in well-watered conditions and to efficiently decrease this rate during drought.Stomatal sensitivities to the hydraulic environmental factors (water potentials in plant and air) had higher values in well-watered trees and a more pronounced response to drought than the sensitivities to the photosynthetic environmental factors ([CO2] and light intensity). Thus, the hydraulic factors most likely prevail over the photosynthetic factors in determining stomatal conductance in these species.In response to exogenous ABA, the rates of stomatal closure, following a decrease in air humidity and light intensity, and an increase in [CO2], were accelerated. Stomatal opening following an increase in air humidity and light intensity and a decrease in [CO2] was replaced by slow closing. The rate of stomatal opening following an increase in leaf water potential was reduced. As the sensitivities to changes in light were modified less by the ABA than the other stomatal sensitivities, the prediction of stomatal responses on the basis of the sensitivity to light alone should be excluded in stomatal models.  相似文献   

17.

Background and Aims

Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem.

Methods

The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy.

Key Results

Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water.

Conclusions

TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells and/or water in the heartwood-forming xylem.  相似文献   

18.
Dispersal comprises a complex life-history syndrome that influences the demographic dynamics of especially those species that live in fragmented landscapes, the structure of which may in turn be expected to impose selection on dispersal. We have constructed an individual-based evolutionary sexual model of dispersal for species occurring as metapopulations in habitat patch networks. The model assumes correlated random walk dispersal with edge-mediated behaviour (habitat selection) and spatially correlated stochastic local dynamics. The model is parametrized with extensive data for the Glanville fritillary butterfly. Based on empirical results for a single nucleotide polymorphism (SNP) in the phosphoglucose isomerase (Pgi) gene, we assume that dispersal rate in the landscape matrix, fecundity and survival are affected by a locus with two alleles, A and C, individuals with the C allele being more mobile. The model was successfully tested with two independent empirical datasets on spatial variation in Pgi allele frequency. First, at the level of local populations, the frequency of the C allele is the highest in newly established isolated populations and the lowest in old isolated populations. Second, at the level of sub-networks with dissimilar numbers and connectivities of patches, the frequency of C increases with decreasing network size and hence with decreasing average metapopulation size. The frequency of C is the highest in landscapes where local extinction risk is high and where there are abundant opportunities to establish new populations. Our results indicate that the strength of the coupling of the ecological and evolutionary dynamics depends on the spatial scale and is asymmetric, demographic dynamics having a greater immediate impact on genetic dynamics than vice versa.  相似文献   

19.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   

20.
To investigate the effect of the light spectrum on photosynthesis, growth, and secondary metabolites Rosa hybrida ‘Scarlet’, Chrysanthemum morifolium ‘Coral Charm’, and Campanula portenschlagiana ‘BluOne’ were grown at 24/18 °C day/night temperature under purpose-built LED arrays yielding approximately 200 μmol m−2 s−1 at plant height for 16 h per day. The four light treatments were (1) 40% Blue/60% Red, (2) 20% Blue/80% Red, (3) 100% Red, and (4) 100% White (Control). The plant height was smallest in 40% Blue/60% Red in roses and chrysanthemums, while the biomass was smallest in the white control in roses and in 100% Red in chrysanthemums. The total biomass was unaffected by the spectrum in campanulas, while the leaf area was smallest in the 40% Blue/60% Red treatment. In 100% Red curled leaves and other morphological abnormalities were observed. Increasing the blue to red ratio increased the stomatal conductance though net photosynthesis was unaffected, indicating excess stomatal conductance in some treatments. With higher blue light ratio all phenolic acids and flavonoids increased. In view of the roles of these secondary metabolites as antioxidants, anti-pathogens, and light protectants, we hypothesize that blue light may predispose plants to better cope with stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号