首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The arbuscular mycorrhizal symbiosis links N mineralization to plant demand   总被引:5,自引:0,他引:5  
Arbuscular mycorrhizal (AM) fungi facilitate inorganic N (NH4 + or NO3 ) uptake by plants, but their role in N mobilization from organic sources is unclear. We hypothesized that arbuscular mycorrhizae enhance the ability of a plant to use organic residues (ORs) as a source of N. This was tested under controlled glasshouse conditions by burying a patch of OR in soil separated by 20-μm nylon mesh so that only fungal hyphae can pass through it. The fate of the N contained in the OR patch, as influenced by Glomus claroideum, Glomus clarum, or Glomus intraradices over 24 weeks, was determined using 15N as a tracer. AM fungal species enhanced N mineralization from OR to different levels. N recovery and translocation to Russian wild rye by hyphae reached 25% of mineralized N in G. clarum, which was most effective despite its smaller extraradical development in soil. Mobilization of N by G. clarum relieved plant N deficiency and enhanced plant growth. We show that AM hyphae modify soil functioning by linking plant growth to N mineralization from OR. AM species enhance N mineralization differentially leading to species-specific changes in the quality of the soil environment (soil C-to-N ratio) and structure of the soil microbial community.  相似文献   

2.
Abstract

Although Rhizoctonia solani is a cosmopolitan soilborne pathogen, the genus includes isolates with different pathogenicity ranging from high virulence to avirulence. The biocontrol strain Pseudomonas fluorescens P190r and the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG12 were inoculated alone or in combination in tomato plants infested by the mildly virulent pathogen R. solani #235. Plant growth as well as root morphometric and topological parameters were evaluated. The infection of R. solani was significantly reduced by all the combinations of the beneficial microorganisms. Root systems of R. solani‐infected plants were weakly developed but highly branched with a herring‐bone pattern, while those inoculated with the AM fungus, alone or in combination with the bacterial strain, were longer and more developed, and displayed a dichotomous pattern. The interactions among these three microorganisms affected plant growth and root architecture of tomato plants.  相似文献   

3.
For rationalizing molecular analysis of field-collected roots in diversity studies on arbuscular mycorrhiza, we compared three different approaches. After DNA extraction from 50 root samples of Plantago lanceolata grown on monoculture plots at a former arable field site, (1) DNAs were amplified separately by nested PCR and each amplicon was cloned separately; (2) DNAs were amplified separately by nested PCR, 1 μl of each amplicon was pooled, and a single cloning was made from the resulting amplicons mix; and (3) DNAs were pooled and the single amplicon derived from the nested PCR was cloned. Based on these three different methods, 109 nuclear ribosomal internal transcribed spacer sequences were obtained. Methods 1 and 2 enabled the detection of almost similar levels of arbuscular mycorrhizal fungal diversity. However, method 1 was expensive and time-consuming as much more cloning had to be done. Method 3 was completely biased by preferential amplification of nontarget organisms, which were only detected in low frequencies by the other methods.  相似文献   

4.
The arbuscular mycorrhizal (AM) symbiosis belongs to the strategies plants have developed to cope with adverse environmental conditions including contamination by heavy metals such as cadmium (Cd). In the present work, we report on the protective effect conferred by AM symbiosis to the model legume Medicago truncatula grown in presence of Cd, and on the 2‐D‐based proteomic approach further used to compare the proteomes of M. truncatula roots either colonised or not with the AM fungus Glomus intraradices in Cd‐free and Cd‐contaminated substrates. The results indicated that at the proteome level, 9 out of the 15 cadmium‐induced changes in nonmycorrhizal roots were absent or inverse in those Cd‐treated and colonized by G. intraradices, including the G. intraradices‐dependent down‐accumulation of Cd stress‐responsive proteins. Out of the twenty‐six mycorrhiza‐related proteins that were identified, only six displayed changes in abundance upon Cd exposure, suggesting that part of the symbiotic program, which displays low sensitivity to Cd, may be recruited to counteract Cd toxicity through the mycorrhiza‐dependent synthesis of proteins having functions putatively involved in alleviating oxidative damages, including a cyclophilin, a guanine nucleotide‐binding protein, an ubiquitin carboxyl‐terminal hydrolase, a thiazole biosynthetic enzyme, an annexin, a glutathione S‐transferase (GST)‐like protein, and a S‐adenosylmethionine (SAM) synthase.  相似文献   

5.
Here we present a Zn transporter cDNA named MtZIP2 from the model legume Medicago truncatula. MtZIP2 encodes a putative 37 kDa protein with 8-membrane spanning domains and has moderate amino acid identity with the Arabidopsis thaliana Zn transporter AtZIP2p. MtZIP2 complemented a Zn-uptake mutant of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems, but not in leaves of M. truncatula and, in contrast to all other plant Zn transporters characterized thus far, MtZIP2 was up-regulated in roots by Zn fertilization. Expression was highest in roots exposed to a toxic level of Zn. MtZIP2 expression was also examined in the roots of M. truncatula when colonized by the obligate plant symbiont, arbuscular mycorrhizal (AM) fungi, since AM fungi are renowned for their ability to supply plants with mineral nutrients, including Zn. Expression was down-regulated in the roots of the mycorrhizal plants and was associated with a reduced level of Zn within the host plant tissues.  相似文献   

6.
Despite the importance of arbuscular mycorrhizal fungi (AMF) within deciduous forest ecosystems, we know little about how natural AMF communities are structured in the root zone of the endangered elm species Ulmus chenmoui. In this study, three U. chenmoui sampling sites, differing with respect to plant health, age, and growth status, were selected in Anhui Province, China. AMF biodiversity in the root zones of individual U. chenmoui trees was investigated using high‐throughput sequencing. In total, 61 AMF operational taxonomic units were detected. Five genera, namely Glomus (62.82%), Paraglomus (17.82%), Rhizophagus (4.29%), Septoglomus (4.06%) and Funneliformis (2.35%), and 29 species of AMF were identified. Correlation analysis indicated that available soil phosphorus and potassium concentrations were the main edaphic factors influencing AMF community structure. There was a difference in AMF species richness among the three U. chenmoui stands. Our study showed that soil nutrient concentrations and plant health, age, and growth status can exert a selective effect on the composition of the AMF population in the soil in the root zones of U. chenmoui trees.  相似文献   

7.
Arbuscular mycorrhizal (AM) fungi are a multifaceted group of mutualistic symbionts that are common to terrestrial ecosystems. The interaction between AM fungi and plant roots is of environmental and agronomic importance. Understanding the molecular changes within the host plant upon AM fungal colonisation is a pre-requisite to a greater understanding of the mechanisms underlying the interaction. Differential mRNA display was conducted on leaf tissue of tomato plants colonised and non-colonised by the AM fungus Glomus mosseae and five putative differentially regulated cDNAs were identified. All cDNAs isolated shared high sequence similarity to known plant genes. Differential screening was initially used to establish whether the cDNAs were differentially expressed. Semi-quantitative RT-PCR was used to establish gene expression patterns for all five clones within leaf and root tissue of mycorrhizal and non-mycorrhizal colonised tomato plants. Differential regulation was observed for all five cDNAs. Down-regulation within the leaf tissue of mycorrhizal plants was observed for 4 out of the 5 cDNAs with an up-regulation observed only for one. Tissue specific regulation was observed for several cDNAs, with down-regulation observed in mycorrhizal leaf tissue and up-regulation observed within mycorrhizal root tissue as compared to non-mycorrhizal tissue.  相似文献   

8.
van de Staaij  J.  Rozema  J.  van Beem  A.  Aerts  R. 《Plant Ecology》2001,154(1-2):169-177
An area of coastal dune grassland, dominated by the gramineous species Calamagrostis epigeios and Carex arenaria, was exposed to enhanced levels of UV-B radiation during a five year period. These species showed reduced AM-fungal infection percentages in their roots. In C. epigeios AM infection was reduced by 18%, C. arenaria showed a reduction by 20%. The major effect of enhanced UV-B on AM associations was a reduction of the number of arbuscules. This indicates a reduction in the exchange of nutrients between the symbionts. Since the effect of UV-B on AM associations may result from altered flavonoid levels in the root exudates of the host plants, flavonoid levels in the roots were investigated. No detectable flavonoid concentrations were found in the roots of C. epigeios and C. arenaria. Less effective AM associations can have pronounced negative effects on biodiversity and nutrient dynamics of the dune grassland ecosystem. The possible mechanisms causing these indirect effects of elevated UV-B on below ground AM associations are discussed. We conclude that UV-B induced changes in plant hormone levels are more likely to be the mechanism reducing AMF infection than UV-B induced alterations in flavonoid concentrations in the root exudates of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号