首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0577-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
《PloS one》2013,8(11)
Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.  相似文献   

3.
4.
Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data, and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC) to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.
This is a “Topic Page” article for PLOS Computational Biology.
  相似文献   

5.
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins.  相似文献   

6.
A combined approach of whole genome shotgun sequencing and ultra-high density linkage mapping using skim sequencing of a segregating population is effective for assembling allopolyploid genomes.See related Research, http://dx.doi.org/10.1186/s13059-015-0582-8  相似文献   

7.
Next-generation sequencing projects have underappreciated information management tasks requiring detailed attention to specimen curation, nucleic acid sample preparation and sequence production methods required for downstream data processing, comparison, interpretation, sharing and reuse. The few existing metadata management tools for genome-based studies provide weak curatorial frameworks for experimentalists to store and manage idiosyncratic, project-specific information, typically offering no automation supporting unified naming and numbering conventions for sequencing production environments that routinely deal with hundreds, if not thousands of samples at a time. Moreover, existing tools are not readily interfaced with bioinformatics executables, (e.g., BLAST, Bowtie2, custom pipelines). Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and perform analyses and information management tasks via an intuitive web-based interface. Several use cases with short-read sequence datasets are provided to validate installation and integrated function, and suggest possible methodological road maps for prospective users. Provided examples highlight possible OMMS workflows for metadata curation, multistep analyses, and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for webbased deployment supporting geographically-dispersed projects. The OMMS was developed using an open-source software base, is flexible, extensible and easily installed and executed. The OMMS can be obtained at http://omms.sandia.gov.

Availability

The OMMS can be obtained at http://omms.sandia.gov  相似文献   

8.
9.
Despite the steadily decreasing costs of genome sequencing, prioritizing organisms for sequencing remains important in large-scale projects. Phylogeny-based selection is of interest to identify those organisms whose genomes can be expected to differ most from those that have already been sequenced. Here, we describe a method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice. The scoring itself, as well as pre- and post-processing of the data, is illustrated using two real-world examples in which the method has already been applied for selecting targets for genome sequencing. These projects are the JGI CSP Genomic Encyclopedia of Bacteria and Archaea phase I, targeting 1,000 type strains, and, on a smaller-scale, the phylogenomics of the Roseobacter clade. Potential artifacts of the method are discussed and compared to a selection approach based on the taxonomic classification.  相似文献   

10.
Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud) servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/  相似文献   

11.
In a recent study, rich clinical assessment and longitudinal study design are combined with host gene expression and microbial sequencing analyses to develop a framework for exploring disease etiology and outcomes in the context of human inflammatory disease.See related article: http://dx.doi.org/10.1186/s13059-015-0637-x  相似文献   

12.
eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during shmoo formation. Our data indicate that translation of the polyproline motifs in Bni1 is eIF5A dependent and this translation dependency is lost upon deletion of the polyprolines. Moreover, an exogenous increase in Bni1 protein levels partially restores the defect in shmoo formation seen in eIF5A mutants. Overall, our results identify eIF5A as a novel and essential regulator of yeast mating through formin translation. Since eIF5A and polyproline formins are conserved across species, our results also suggest that eIF5A-dependent translation of formins could regulate polarized growth in such processes as fertility and cancer in higher eukaryotes.  相似文献   

13.
14.

Background

Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality.

Results

In order to sequence the genome of Norway spruce, which is of great size and complexity, we developed and applied a new technology based on the massive production, sequencing, and assembly of Fosmid pools (FP). The spruce chromosomes were sampled with ~40,000 bp Fosmid inserts to obtain around two-fold genome coverage, in parallel with traditional whole genome shotgun sequencing (WGS) of haploid and diploid genomes. Compared to the WGS results, the contiguity and quality of the FP assemblies were high, and they allowed us to fill WGS gaps resulting from repeats, low coverage, and allelic differences. The FP contig sets were further merged with WGS data using a novel software package GAM-NGS.

Conclusions

By exploiting FP technology, the first published assembly of a conifer genome was sequenced entirely with massively parallel sequencing. Here we provide a comprehensive report on the different features of the approach and the optimization of the process.We have made public the input data (FASTQ format) for the set of pools used in this study:ftp://congenie.org/congenie/Nystedt_2013/Assembly/ProcessedData/FosmidPools/.(alternatively accessible via http://congenie.org/downloads).The software used for running the assembly process is available at http://research.scilifelab.se/andrej_alexeyenko/downloads/fpools/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-439) contains supplementary material, which is available to authorized users.  相似文献   

15.
The advancement of high-throughput sequencing (HTS) technologies and the rapid development of numerous analysis algorithms and pipelines in this field has resulted in an unprecedentedly high demand for training scientists in HTS data analysis. Embarking on developing new training materials is challenging for many reasons. Trainers often do not have prior experience in preparing or delivering such materials and struggle to keep them up to date. A repository of curated HTS training materials would support trainers in materials preparation, reduce the duplication of effort by increasing the usage of existing materials, and allow for the sharing of teaching experience among the HTS trainers’ community. To achieve this, we have developed a strategy for materials’ curation and dissemination. Standards for describing training materials have been proposed and applied to the curation of existing materials. A Git repository has been set up for sharing annotated materials that can now be reused, modified, or incorporated into new courses. This repository uses Git; hence, it is decentralized and self-managed by the community and can be forked/built-upon by all users. The repository is accessible at http://bioinformatics.upsc.se/htmr.  相似文献   

16.
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans  相似文献   

17.
Corynebacterium jeddahense sp. nov., strain JCBT, is the type strain of Corynebacterium jeddahense sp. nov., a new species within the genus Corynebacterium. This strain, whose genome is described here, was isolated from fecal flora of a 24-year-old Saudi male suffering from morbid obesity. Corynebacterium jeddahense is a Gram-positive, facultative anaerobic, nonsporulating bacillus. Here, we describe the features of this bacterium, together with the complete genome sequencing and annotation, and compare it to other member of the genus Corynebacterium. The 2,472,125 bp-long genome (1 chromosome but not plasmid) contains 2,359 protein-coding and 53 RNA genes, including 1 rRNA operon.  相似文献   

18.
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5CA) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5CA, and apc10 cells, and suppressed apc5CA cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5CA RLS, suggesting an epistatic interaction between apc5CA and fob1. Mutation to a putative L-Box (Fob1E420V), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.  相似文献   

19.
Rapid development of next generation sequencing technology has enabled the identification of genomic alterations from short sequencing reads. There are a number of software pipelines available for calling single nucleotide variants from genomic DNA but, no comprehensive pipelines to identify, annotate and prioritize expressed SNVs (eSNVs) from non-directional paired-end RNA-Seq data. We have developed the eSNV-Detect, a novel computational system, which utilizes data from multiple aligners to call, even at low read depths, and rank variants from RNA-Seq. Multi-platform comparisons with the eSNV-Detect variant candidates were performed. The method was first applied to RNA-Seq from a lymphoblastoid cell-line, achieving 99.7% precision and 91.0% sensitivity in the expressed SNPs for the matching HumanOmni2.5 BeadChip data. Comparison of RNA-Seq eSNV candidates from 25 ER+ breast tumors from The Cancer Genome Atlas (TCGA) project with whole exome coding data showed 90.6–96.8% precision and 91.6–95.7% sensitivity. Contrasting single-cell mRNA-Seq variants with matching traditional multicellular RNA-Seq data for the MD-MB231 breast cancer cell-line delineated variant heterogeneity among the single-cells. Further, Sanger sequencing validation was performed for an ER+ breast tumor with paired normal adjacent tissue validating 29 out of 31 candidate eSNVs. The source code and user manuals of the eSNV-Detect pipeline for Sun Grid Engine and virtual machine are available at http://bioinformaticstools.mayo.edu/research/esnv-detect/.  相似文献   

20.

Background

Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise.

Results

We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic.

Conclusions

This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号