首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecXG and FecXB) and the third (FecGH) in GDF9. All three mutations segregate in Belclare sheep while one, FecXB, has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecXG, FecXB and FecGH) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecXG mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecXB was only found among the hyper-prolific ewes. The FecGH mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecXG and FecGH mutations in Belclare and Cambridge sheep and that the FecXB mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960′s and subsequently used in the genesis of the Belclare.  相似文献   

2.
The aim of this research was to investigate the genetic structure at BMPR 1B, BMP15 and GDF9 prolificacy genes in five sheep breeds reared in Tunisia: Barbarine, Queue Fine de L’Ouest, Noire de Thibar, Sicilo-Sarde and D’man. Genomic DNA of 204 sheep was investigated for the FecBB (BMPR 1B), FecXR, FecXH, FecXI, FecXL, FecXG, FecXB (BMP15) and FecGH (GDF9) mutations. The sequence variability of the different DNA fragments utilised for genotyping was further investigated by Single Stranded Conformation Polymorphism (SSCP) and sequencing. All the above-mentioned mutations were absent in the five sheep breeds examined. SSCP analysis and sequencing allowed the detection of two nucleotide variations. A non-functional mutation (T/C transition at nt 747 of BMP15 cDNA known as B3) was found at the BMP15 gene, in the Noire de Thibar breed; this mutation was first detected in the Belclare sheep. A new nucleotide change G/A at nt 1159 of BMP15 cDNA, causing the amino acid change A119T in the mature peptide, was detected in the Barbarine breed for the first time. The highly prolific D’man ewes were monomorphic for the absence of all the known prolificacy alleles.  相似文献   

3.
Animals from the Booroola line of Australian Merino sheep are characterized by a high ovulation rate that can be attributed to the presence of a codominant allele (Fec B).The specific function of the gene has not been identified. Effective use of the trait within the sheep breeding industry requires one or more genetic markers that can distinguish between alternative alleles at the locus Fec. With a combination of DNA minisatellite markers and polymorphic protein markers, a cluster of seven minisatellite fragments has been identified as being linked to the Fec gene and to the ovine A blood group locus. The minisatellite fragments have been derived from multilocus probes and hence cannot be used to define the chromosomal location of the Fec gene or to serve as diagnostic markers for Fec. The derivation of cloned single locus markers from the minisatellite fragments will enable finer scale mapping of the Fec and the A blood group locus in sheep.  相似文献   

4.
The Black Bengal is a prolific goat breed in India. Natural mutations in prolific sheep breeds have shown that the transforming growth factor beta (TGF-β) super family ligands such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and their type I receptor (bone morphogenetic protein receptor, BMPR1B) are crucial for ovulation and as well as for increasing litter size. Mutations in any of these genes increased prolificacy in sheep. Based on the known mutation information in sheep PCR primers were designed to screen known polymorphism in 88 random Black Bengal goats. Only the BMPR1B gene was polymorphic. Three genotypes of animals were detected in tested animals with mutant (FecBB) and wild type (FecB+) alleles were 0.57 and 0.43, respectively. Non-carrier, heterozygous carrier and homozygous carrier Black Bengal does had 2.7, 3.04 and 3.11 kids, respectively. All known point mutations of BMP15 and GDF9 genes were monomorphic in the animals tested. These results preliminarily showed that the BMPR1B gene might be a major gene that influences prolificacy of Black Bengal goats.  相似文献   

5.
Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E−05 and 1E−07. The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecXGr and FecXO were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (pFecXGr = 5.98E−06 and pFecXO = 2.55E−08). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecXGr/FecXGr, LS = 2.50±0.65 versus FecX+/FecXGr, LS = 1.93±0.42, p<1E−03 and FecXO/FecXO, OR = 3.28±0.85 versus FecX+/FecXO, OR = 2.02±0.47, p<1E−03). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecXGr/FecXGr Grivette and homozygous FecXO/FecXO Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women′s fertility disorders.  相似文献   

6.
7.
Glutathione reductase (EC 1.6.4.2) was purified from Eastern white pine (Pinus strobus L.) needles. The purification steps included affinity chromatography using 2′, 5′-ADP-Sepharose, FPLC-anion-exchange, FPLC-hydrophobic interaction, and FPLC-gel filtration. Separation of proteins by FPLC-anion-exchange resulted in the recovery of two distinct isoforms of glutathione reductase (GRA and GRB). Purified GRA had a specific activity of 1.81 microkatals per milligram of protein and GRB had a specific activity of 6.08 microkatals per milligram of protein. GRA accounted for 17% of the total units of glutathione reductase recovered after anion-exchange separation and GRB accounted for 83%. The native molecular mass for GRA was 103 to 104 kilodaltons and for GRB was 88 to 95 kilodaltons. Both isoforms of glutathione reductase were dimers composed of identical subunit molecular masses which were 53 to 54 kilodaltons for GRA and 57 kilodaltons for GRB. The pH optimum for GRA was 7.25 to 7.75 and for GRB was 7.25. At 25°C the Km for GSSG was 15.3 and 39.8 micromolar for GRA and GRB, respectively. For NADPH, the Km was 3.7 and 8.8 micromolar for GRA and GRB, respectively. Antibody produced from purified GRB was reactive with both native and denatured GRB, but was cross-reactive with only native GRA.  相似文献   

8.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

9.
10.
11.
12.
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta superfamily, is specifically expressed in oocytes and is essential for sheep prolificacy. Reported mutations in this gene cause increased ovulation rate and infertility in a dosage-sensitive manner. In this work, a new naturally occurring mutation in the BMP15 gene from the ovine Rasa Aragonesa breed is described. This mutation is a deletion of 17 bp that leads to an altered amino acid sequence and introduces a premature stop codon in the protein. Highly significant associations (P < 0.0001) were found between the estimated breeding value for prolificacy and the genotype of BMP15 in Rasa Aragonesa animals with high and low breeding values for this trait. As for other mutations in BMP15, this new mutation is associated with increased prolificacy and sterility in heterozygous and homozygous ewes respectively.  相似文献   

13.
The present study was undertaken to explore the genetic basis of caprine prolificacy and to screen indigenous goats for prolificacy associated markers of sheep in BMPR1B, GDF9 and BMP15 genes. To detect the associated mutations and identify novel allelic variants in the candidate genes, representative samples were collected from the breeding tract of indigenous goat breeds varying in prolificacy and geographic distribution. DNA was extracted and PCR amplification was done using primers designed or available in literature for the coding DNA sequence of candidate genes. Direct sequencing was done to identify the genetic variations. Mutations in the candidate genes associated with fecundity in sheep were not detected in Indian goats. Three non-synonymous SNPs (C818T, A959C and G1189A) were identified in exon 2 of GDF9 gene out of which mutation A959C has been associated with prolificacy in exotic goats. Two novel SNPs (G735A and C808G) were observed in exon 2 of BMP15 gene.  相似文献   

14.
M-H Li  T Tiirikka  J Kantanen 《Heredity》2014,112(2):122-131
In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three known pigmentation genes (TYRP1, ASIP and MITF) in sheep. Eighteen of these associations were confirmed in further tests between white versus non-white individuals, but none of the 35 associations were significant in the analysis of only non-white colours. Across the tests, the s66432.1 in ASIP showed significant association (P=4.2 × 10−11 for all the colours; P=2.3 × 10−11 for white versus non-white colours) with the variation in coat colours and strong linkage disequilibrium with other significant variants surrounding the ASIP gene. The signals detected around the ASIP gene were explained by differences in white versus non-white alleles. Further, a genome scan for selection for white coat pigmentation identified a strong and striking selection signal spanning ASIP. Our study identified the main candidate gene for the coat colour variation between white and non-white as ASIP, an autosomal gene that has been directly implicated in the pathway regulating melanogenesis. Together with ASIP, the two other newly identified genes (TYRP1 and MITF) in the Finnsheep, bordering associated SNPs, represent a new resource for enriching sheep coat-colour genetics and breeding.  相似文献   

15.
16.
《Small Ruminant Research》2009,81(1-3):57-61
This study reports the status of the Booroola (FecB) and Galway (FecXG) mutations in Indian sheep breeds. The Kendrapada sheep (n = 46) was genotyped for the presence of FecB and FecXG mutations, while the Garole (n = 34), Malpura (n = 30), and Decanni sheep (n = 15) for the FecXG mutation. The FecB and FecXG genotyping was carried out by forced restriction fragment length polymorphism PCR technique. In the present study, FecB mutation was discovered in the Kendrapada sheep of Orissa, which is now the second prolific sheep of India after the Garole. Out of 46 individuals of Kendrapada sheep, 26 were homozygous (BB), 15 heterozygous (B+) and 5 non-carriers (++) for the FecB mutation. The frequency of the FecB allele in this sample was about 0.73. Results indicated that the frequency of the FecB mutation is high, but the gene is not fixed in the population as reported in Garole sheep. None of sheep breeds carried the FecXG mutation. The discovery of the FecB mutation in Kendrapada sheep will facilitate the use of FecB allele in improving the prolificacy of non-prolific sheep breeds of India.  相似文献   

17.
Several causative mutations in candidate genes affecting prolificacy have been detected in various sheep breeds. A genome‐wide association study was performed on estimated breeding values for litter size in Lori‐Bakhtiari sheep. Prolific ewes with twinning records and others with only singleton records were genotyped using the medium‐density Illumina Ovine SNP50 array. Four single nucleotide polymorphisms (SNPs) associated with litter size were identified on chromosomes 3, 6 and 22. The region on sheep chromosome 3 between 75 739 167 and 75 745 152 bp included two significant SNPs (s52383.1 and OAR3_80038014_X.1) in high linkage disequilibrium with each other. The region that surrounds these SNPs contains a novel putative candidate gene: luteinizing hormone/choriogonadotropin receptor (LHCGR), known to be involved in ovarian steroidogenesis and organism‐specific biosystem pathways in sheep. Known prolificacy genes BMPR1B, BMP15 and GDF9 were not associated with litter size in Lori‐Bakhtiari sheep, suggesting that other biological mechanisms could be responsible for the trait's variation in this breed.  相似文献   

18.
Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecLL. Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecLL carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecLL. B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecLL/FecLL ewes at mRNA and protein levels. In FecLL carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.  相似文献   

19.
Experiments have been performed to help clarify the role of nonhomologies in phage λ recombination. Three-factor crosses were carried out, and the frequencies of single and double recombinants in the two adjoining intervals were compared when the central marker was either a double point mutation (v1v3) or deletion (rex-cI deletion) or nonhomologous substitution (imm434). In all cases the lefthand marker was a bio substitution (Fec- phenotype, which does not permit plating on recA-), and the righthand marker was an amber mutation in gene O. Experiments were performed in all four possible arrangements of the central and rightward markers, while selecting for the Fec+ phenotype on the recA- host. As anticipated, high negative interference (HNI) was observed with point mutations, but when the central marker was a substitution nonhomology, HNI was reduced about tenfold. Surprisingly, when the central marker was a simple deletion, a dramatic asymmetry in results was observed, with HNI being exhibited only when the central deletion marker was acquired by the double recombinant. These results indicate that under normal conditions (red+, gam+, rec+) and with noninhibited DNA replication, recombination in coliphage λ entails a highly asymmetric step that could be at the level of strand transfer or mismatch repair.  相似文献   

20.
Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号