首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Insulin-like growth factor 1 (IGF-1) stimulates α-secretase processing of amyloid precursor protein (APP) and decreases Aβ production. Little is known about the relationship between IGF-1 and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1), the protease essential for the production of β-amyloid peptides (Aβ). Here, we investigated the effect of IGF-1 on BACE-1 in PC12 cells. Quantitative polymerase chain reaction analysis and western blot showed that treatment of cells with IGF-1 significantly decreased the levels of BACE-1 mRNA and protein. Furthermore, IGF-1 increased the phosphorylation of Akt and ERK1/2. The presence of the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 and the mitogen-activated protein kinase kinases (MEK) inhibitor PD98059 blocked the effect of IGF-1 on BACE-1. Our data indicated that IGF-1-induced reduction of BACE-1 might involve the PI3-K/Akt and MAPK/ERK1/2 signaling pathways.  相似文献   

4.
Multiple Pathways of N-Kinase Activation in PC12 Cells   总被引:3,自引:3,他引:0  
Past work established a cell-free assay for a nerve growth factor (NGF)-activated protein kinase activity (designated N-kinase) that utilizes tyrosine hydroxylase and histone H1 as substrates and that is distinct from a variety of well-characterized kinases. This study explores the specificity and mechanistic pathway(s) by which N-kinase activity is regulated in PC12 rat pheochromocytoma cells. N-kinase is rapidly activated in these cells by treatment with NGF, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), phorbol ester, or dibutyryl cyclic AMP. Our data indicate that the stimulated activity is the same for each agent by several criteria: It exhibits the same characteristic biphasic elution pattern by Mono S fast protein liquid chromatography (FPLC), except for the case of dibutyryl cyclic AMP in which one of the activity peaks is somewhat shifted; it shows the same elution pattern by FPLC on a Superose 12 column; it possesses identical substrate specificity; and, except in the case of dibutyryl cyclic AMP, it does not show additivity when each agent is added simultaneously with NGF. The multiple forms of N-kinase are interconvertible in that rechromatography on a Mono S column yields a single peak of activity. Also, when NGF and dibutyryl cyclic AMP are simultaneously presented to cells, the chromatographic profile resembles that with NGF alone. Activation occurs through several independent initial pathways. Down-regulation of protein kinase C by phorbol ester pretreatment prevents N-kinase activation by phorbol ester, but not by the other agents. A PC12 cell-derived line deficient in cyclic AMP-dependent protein kinase II activity exhibits N-kinase activation by all treatments except dibutyryl cyclic AMP. The properties of N-kinase suggests that it is similar or identical to the ribosomal S6 protein kinase described by Blenis and Erikson. Additional experiments revealed that N-kinase activity can be stimulated in several cell lines in addition to PC12 cells. These findings indicate that the N-kinase can be activated via multiple second-messenger pathways and that it could therefore potentially play a significant role in mediating shared intracellular responses to various extracellular signals.  相似文献   

5.
Long-term timelapse videomicroscopy was used to investigate the relationships and transitions between mitosis, differentiation, and apoptosis in cultures of NGF-differentiated PC12 cells. After 4 days in NGF, cultures were at an early stage of neuronal differentiation. Removal of NGF led to an appreciable increase in apoptosis with no effect on the relatively high mitotic rate. After 7 days in NGF, cells were more neuronal; NGF withdrawal again resulted in no change in the low mitotic rate but an even greater increase in apoptosis, eventually leading to considerable net loss of cells. After 10 days, cells were terminally differentiated; removal of NGF did not affect the negligible mitotic rate but induced a dramatic increase in apoptosis resulting in death of most of the cells. Apoptosis in the fraction of cells that had become NGF-dependent followed a similar timecourse and was characterized by the same morphology at all three differentiation states. Thus, acquisition of NGF-dependence in PC12 cultures seemed to be the result of a steadily increasing percentage of cells that had each undergone a relatively rapid transition to a postmitotic, NGF-sensitive state. These studies were also helpful for elucidating the timing of apoptosis. Onset of apoptosis was markedly asynchronous within a culture, but the active, blebbing phase, once initiated, always lasted about 45 min, regardless of differentiation state or time spent without NGF. Thus, the active phase might represent a conserved sequence of events that every cell must ultimately undergo before apoptotic death.  相似文献   

6.
Treatment with nerve growth factor (NGF) produces a marked decrease of cyclin F levels in PC12EY cells. This decrease is prevented by the simultaneous addition of K-252a. A smaller decrease is observed when the cells are treated with fibroblast growth factor, but the addition of epidermal growth factor has no comparable effect. Time course studies show that the decrease in cyclin F precedes the changes produced by NGF in the distribution of cells within the cell cycle. The data suggest that cyclin F is involved in NGF-mediated cell cycle events during the differentiation of PC12EY cells.  相似文献   

7.
SB203580 is a p38 MAPK inhibitor that has been implicated in the activation of c-Raf. This study shows that the addition of SB203580 to PC12 cells causes the sustained activation of B-Raf but not of ERK. The addition of SB203580 prolonged the transient activation of both B-Raf and ERK by EGF alone. No significant change was detected in MAPKAPK-2 activity at low concentrations of SB203580, which induced neurite outgrowth in the EGF-stimulated PC12 cells. Therefore, these results indicate that SB203580 influences not only c-Raf as previously reported, but can also induce the activation of B-Raf, which in conjunction with EGF causes the sustained activation of ERK and differentiation in PC12 cells.  相似文献   

8.
Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity.  相似文献   

9.
The balance between specific signals from different growth factors dictates the biological response of mammalian cells including cell proliferation, differentiation and survival. PC12 cells represent a model of choice to compare the signalling of differentiative growth factors, as NGF, and of mitogenic growth factors, as EGF. In these cells the prolonged activity of the ERK kinase dictates the decision of cells to differentiate. Here we focused on the cytosolic tyrosine phosphatase Shp2 as an established regulator of the Ras-ERK cascade, to elucidate its involvement in determining the stimulation-dependent PC12 cell fate. To this end, we generated PC12 derived cell lines that express the interfering mutant of Shp2 under a tetracycline-inducible promoter. Our findings show that Shp2 participates to the opposite effects induced in PC12 cells by EGF and NGF and that the interactions with the multidocking Gab2 protein mediate such effects.  相似文献   

10.
Summary 1. Colostrinin (CLN) induces maturation and differentiation of murine thymocytes, promotes proliferation of peripheral blood leukocytes, induces immunomodulator cytokines, and ameliorates oxidative stress-mediated activation of c-Jun NH2-terminal kinases. 2. Here we report that upon treatment with CLN, medullary pheochromocytoma (PC12) cells ceased to proliferate and extend neurites. 3. The arrest of CLN-treated PC12 cells in the G1 phase of the cell cycle was due to an increase in the phosphorylation of p53 at serine15 (p53ser15) and expression of p21WAF1. PC12 cells treated with inhibitory oligonucleotides to p53 lacked p53ser15 and p21WAF1 expression, and did not show morphological changes after CLN exposure. Transfection with inhibitory oligonucleotides to p21WAF1 had no effect on p53 activation; however, cells failed to arrest or extend neurites. An oligonucleotide inhibiting luciferase expression had no effect on CLN-mediated p53 activation, p21WAF1 expression, growth arrest, or neurite outgrowth. 4. We conclude that CLN induces delicate cassettes of signaling pathways common to cell proliferation and differentiation, and mediates activities that are similar to those of hormones and neurotrophins, leading to neurite outgrowth.  相似文献   

11.
NGF诱导PC12细胞分化的研究   总被引:17,自引:0,他引:17  
动物实验表明,生理浓度的乙醇在脑发育过程中,不但可以影响神经细胞的数量,还可协同增强NGF诱导PC12细胞形态和功能上的分化,分化的PC12细胞具有与交感神经元相似的性状特征。用100mmol/L乙醇和50ng/mlNGF联合诱导可建立PC12细胞分化模型,为以神经细胞为研究对象的实验提供一种获得神经细胞的方法。  相似文献   

12.
Many synaptotagmins are Ca2+-binding membrane proteins with functions in Ca2+-triggered exocytosis. Synaptotagmin IV (syt IV) has no Ca2+ binding activity, but nevertheless modulates exocytosis. Here, cell-attached capacitance recording was used to study single vesicle fusion and fission in control and syt IV overexpressing PC12 cells. Unitary capacitance steps varied widely in size, indicating that both microvesicles (MVs) and dense-core vesicles (DCVs) undergo fusion. Syt IV overexpression reduced the size of DCVs and endocytotic vesicles but not MVs. Syt IV also reduced the basal rate of Ca2+-induced fusion. During kiss-and-run, syt IV increased the conductance and duration of DCV fusion pores but not MV fusion pores. During full-fusion of DCVs syt IV increased the fusion pore conductance but not the duration. Syt IV overexpression increased the duration but not the conductance of fission pores during endocytosis. The effects of syt IV on fusion pores in PC12 cells resembled the effects on fusion pores in peptidergic nerve terminals. However, differences between these and results obtained with amperometry may indicate that amperometry and capacitance detect the fusion of different populations of vesicles. The effects of syt IV on fusion pores are discussed in terms of structural models and kinetic mechanisms.  相似文献   

13.
Intracellular Ca2+ mobilization plays an important role in a wide variety of cellular processes, and multiple second messengers are responsible for mediating intracellular Ca2+ changes. Here we explored the role of one endogenous Ca2+-mobilizing nucleotide, cyclic adenosine diphosphoribose (cADPR), in the proliferation and differentiation of neurosecretory PC12 cells. We found that cADPR induced Ca2+ release in PC12 cells and that CD38 is the main ADP-ribosyl cyclase responsible for the acetylcholine (ACh)-induced cADPR production in PC12 cells. In addition, the CD38/cADPR signaling pathway is shown to be required for the ACh-induced Ca2+ increase and cell proliferation. Inhibition of the pathway, on the other hand, accelerated nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells. Conversely, overexpression of CD38 increased cell proliferation but delayed NGF-induced differentiation. Our data indicate that cADPR plays a dichotomic role in regulating proliferation and neuronal differentiation of PC12 cells.Mobilization of intracellular Ca2+ stores is involved in diverse cell functions, including fertilization, cell proliferation, and differentiation (14). At least three endogenous Ca2+-mobilizing messengers have been identified, including inositol trisphosphate (IP3),3 nicotinic adenine acid dinucleotide phosphate (NAADP), and cyclic adenosine diphosphoribose (cADPR). Similar to IP3, cADPR can mobilize calcium release in a wide variety of cell types and species, from protozoa to animals. The cADPR-mediated Ca2+ signaling has been indicated in a variety of cellular processes (57), from abscisic acid signaling and regulation of the circadian clock in plants, to mediating long-term synaptic depression in hippocampus.Ample evidence shows that the ryanodine receptors are the main intracellular targets for cADPR (1, 2, 8). Ryanodine receptors (RyRs) are intracellular Ca2+ channels widely expressed in various cells and tissues, including muscles and neurons. It is the major cellular mediator of Ca2+-induced Ca2+ release (CICR) in cells. There are three isoforms of ryanodine receptors: RyR1, RyR2, and RyR3, all of which have been implicated in the cADPR signaling (1, 2, 8). However, evidence regarding cADPR acting directly on the receptors is lacking (9). It has been suggested that accessory proteins, such as calmodulin and FK506-binding protein (FKBP), may be involved instead (1015).cADPR is formed from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases. Six ADP-ribosyl cyclases have been identified so far: Aplysia ADP-ribosyl cyclase, three sea urchin homologues (16, 17), and two mammalian homologues, CD38 and CD157 (18). CD38 is a membrane-bound protein and the main mammalian ADP-ribosyl cyclase. As a novel multifunctional enzyme, CD38 catalyzes the synthesis and hydrolysis of both cADPR and NAADP, two structurally and functionally distinct Ca2+ messengers. Virtually all mammalian tissues ever examined have been shown to express CD38. CD38 knock-out mice exhibit multiple physiological defects, ranging from impaired immune responses, metabolic disturbances, to behavioral modifications (1, 6, 18).CD38 was originally identified as a lymphocyte differentiation antigen (18). Indeed, CD38/cADPR has been linked to cell differentiation (5). For example, in human HL-60 cells, CD38 expression and the consequential accumulation of cADPR play a causal role in mediating granulocytic differentiation (19). In addition, expression of CD38 in HeLa and 3T3 cells not only increased intracellular Ca2+ concentration but also induced cell proliferation by significantly reducing the S phase duration, leading to shortened cell doubling time (20). The ability of cADPR to increase cell proliferation has also been observed in human T cells (21), human hemopoietic progenitors (22), human peripheral blood mononuclear cells (23), human mesenchymal stem cells (24), and murine mesangial cells (25).The PC12 cell line was derived from rat adrenal medulla and has been used extensively as a neuronal model, since it exhibits many of the functions observed in primary neuronal cultures (26). Most importantly, PC12 cells can be induced by nerve growth factor (NGF) to differentiate into cells with extensive neurite outgrowths, resembling neuronal dendritic trees (26, 27). In contrast to NGF, numerous growth factors and neurotransmitters can induce the proliferation of PC12 cells instead (26). Both IP3 receptor- and ryanodine receptor-mediated Ca2+ stores have been shown to be present in PC12 cells (2831). The type 2 ryanodine receptor is expressed in PC12 cells and activation of the NO/cGMP pathway in PC12 cells results in calcium mobilization, which is mediated by cADPR and similar to that seen in sea urchin eggs (32). It has been demonstrated that NAADP, another Ca2+-mobilizing messenger, is also a potent neuronal differentiation inducer in PC12 cells, while IP3 exhibits no such role (33, 34). Whether cADPR is involved in the proliferation and differentiation of PC12 cells is unknown.Here we show that activation of the CD38/cADPR/Ca2+ signaling is required for the ACh-induced proliferation in PC12 cells, while inhibition of the pathway accelerates NGF-induced neuronal differentiation. Our data indicate that cADPR is important in regulating cell proliferation and neuronal differentiation in PC12 cells.  相似文献   

14.
Abstract: To investigate the role of the retinoblastoma protein pRB in neuronal differentiation, we have measured the accumulation of hypophosphorylated pRB in PC12 cells stimulated by nerve growth factor (NGF). NGF induced the accumulation of hypophosphorylated pRB within 30 min and the level peaked after 12 h. Viral Kiras, cyclic AMP (cAMP), and 12- O -tetradecanoylphorbol 13-acetate (TPA) also induced the hypophosphorylation of pRB, but epidermal growth factor and interleukin-6 did not. The extent of hypophosphorylation of pRB correlated well with the capacity of these factors to stimulate neurite outgrowth. The constitutively activated Ras induced persistent shift of the phosphorylation state of pRB toward hypophosphorylation. A dominant negative form of cHa-Ras suppressed significantly induction of the hypophosphorylation of pRB by NGF, but not by cAMP. Taken together, these results suggest that the hypophosphorylation of pRB triggered by NGF is mediated by a Ras-dependent pathway. Furthermore, microinjection of a monoclonal antibody specific for the hypophosphorylated form of pRB blocked the neurite outgrowth initiated by NGF. These results suggest a crucial role of pRB in withdrawal of cells from the cell cycle and in neuronal differentiation of PC12 cells.  相似文献   

15.
16.
PC12D cells, a new subline of conventional PC12 cells, respond not only to nerve growth factor but also to cyclic AMP by extending their neurites. These cells are flat in shape and are similar in appearance to PC12 cells that have been treated with nerve growth factor for a few days. In both cell lines, we have characterized the glycosaminoglycans, the polysaccharide moieties of proteoglycans, which are believed to play an important role in cell adhesion and in cell morphology. Under the present culture conditions, only chondroitin sulfate was detected in the media from PC12 and PC12D cells, whereas both chondroitin sulfate and heparan sulfate were found in the cell layers. The levels of cell-associated heparan sulfate and chondroitin sulfate were about twofold and fourfold higher in PC12D cells than in PC12 cells, respectively. Compared to PC12 cells, the amounts of [35S]sulfate incorporated for 48 h into chondroitin sulfate were twofold lower but those into heparan sulfate were 35% higher in PC12D cells. The amount of chondroitin sulfate released by PC12D cells into the medium was about a half of that released by PC12 cells. The ratio of [35S]sulfate-labeled heparan sulfate to chondroitin sulfate was 6.2 in PC12D cells and 2.2 in PC12 cells. These results suggest that there may be some correlation between the increase in content of glycosaminoglycans and the change in cell morphology, which is followed by neurite outgrowth.  相似文献   

17.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
《Fly》2013,7(4):222-227
The mitogen-activated protein kinases (MAPKs) play essential roles during oocyte maturation and egg activation and are also active in somatic cell cycle regulation in many animals. In clams, starfish, ascidians, mice, and frogs, the species-specific timing of MAPK activity during oocyte maturation and egg activation correlates with the different meiotic arrest points of these various organisms. Furthermore, MAPKs have been shown to regulate the meiotic cell cycle in marine invertebrates and vertebrates. The initial trigger for egg activation in insects is different from that of marine invertebrates and vertebrates, and it was not previously known whether changes in MAPK activity accompany egg activation in insects. To examine the regulation of MAPKs during Drosophila egg activation and early embryogenesis, we quantified the levels of phosphorylated (active) forms of ERK, p38 kinase, and JNK by western blotting with antibodies specific to the phospho- forms of these kinases. Levels of phospho-ERK, phospho-p38 kinase, and phospho-JNK are high in Drosophila oocytes. Upon egg activation, levels of all these phospho- (active) forms of MAPKs decrease. Fertilization is not required for this decrease, consistent with the independence of egg activation from fertilization in Drosophila. The decrease in levels of phospho-MAPK occurs normally in embryos laid by sterile females mutant in the egg activation genes cortex, sarah, and prage. We present a model in which the decrease in MAPK activity is an intermediate step in the pathway leading from the calcium signal that initiates egg activation to the downstream events of activation.  相似文献   

19.
20.

Targeting apoptosis in the ischemic penumbra is a rational therapeutic approach for restricting cerebral infarct volume after clinical stroke. The present work explored the capability of the obestatin peptide, as a novel approach to inhibit apoptotic signaling cascades on PC12 cells. According to the results, obestatin treatment significantly reduced nutrient deprivation-induced apoptotic cell death. The protective effects were related to the regulation of the anti-apoptotic protein, BCL-2, and the apoptotic protein caspase-3. This encompasses the control of apoptosis by the interplay between Akt, ERK1/2 and AMPK signaling pathways. The activation of Akt and AMPK was concomitant with the phosphorylation of their downstream targets, GSK3 and ACC, respectively. Besides, obestatin also causes FoxO1 nuclear export supporting the prevention of the apoptosome formation. The concurrent activation of Akt and AMPK by obestatin via the GPR39 receptor, supports a role for this system in the balance concerning the catabolic and the anabolic signaling to sustain cellular function and viability. Furthermore, these results provide both an insight into how the obestatin/GPR39 system regulates anti-apoptotic pathways, and a framework for ascertaining how this system can be optimally targeted in treatment of brain cell death after stroke.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号