首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2.  相似文献   

2.
3.
有活力但不可培养(viable but non-culturable,VBNC)状态是细菌遭遇逆境时进入的一种特殊状态,该状态下的菌体在条件适宜时可复苏并恢复其致病性,被认为是细菌躲避不良环境的一种生存策略。VBNC状态菌体对人类医学和工农业生产具有巨大的潜在威胁,开展关于VBNC状态的检测及诱导、复苏及其机制研究可为减少或避免该状态细菌的危害提供理论基础。本文简要综述了细菌VBNC状态在诱导、复苏及致病性等方面的研究进展,并结合本实验室及国内外相关团队近年来在植物病原细菌VBNC状态研究中的结果,详细总结了VBNC状态细菌的形成和复苏机制,对植物病原细菌在环境胁迫下的存活机制、病害田间初侵染来源分析及VBNC状态菌体在病害循环中的作用等相关研究具有重要参考意义。  相似文献   

4.
The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.  相似文献   

5.
6.
Autoinducer 2 (AI-2) quorum sensing was shown before to regulate the virulence of Vibrio harveyi towards the brine shrimp Artemia franciscana. In this study, several different pathogenic V. harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates were shown to produce AI-2. Furthermore, disruption of AI-2 quorum sensing by a natural and a synthetic brominated furanone protected gnotobiotic Artemia from the pathogenic isolates in in vivo challenge tests.  相似文献   

7.
A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in “viable but non-culturable” (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.  相似文献   

8.
The autoinducer-2 (AI-2) quorum sensing system is involved in a range of population-based bacterial behaviors and has been engineered for cell–cell communication in synthetic biology systems. Investigation into the cellular mechanisms of AI-2 processing has determined that overexpression of uptake genes increases AI-2 uptake rate, and genomic deletions of degradation genes lowers the AI-2 level required for activation of reporter genes. Here, we combine these two strategies to engineer an Escherichia coli strain with enhanced ability to detect and respond to AI-2. In an E. coli strain that does not produce AI-2, we monitored AI-2 uptake and reporter protein expression in a strain that overproduced the AI-2 uptake or phosphorylation units LsrACDB or LsrK, a strain with the deletion of AI-2 degradation units LsrF and LsrG, and an “enhanced” strain with both overproduction of AI-2 uptake and deletion of AI-2 degradation elements. By adding up to 40 μM AI-2 to growing cell cultures, we determine that this “enhanced” AI-2 sensitive strain both uptakes AI-2 more rapidly and responds with increased reporter protein expression than the others. This work expands the toolbox for manipulating AI-2 quorum sensing processes both in native environments and for synthetic biology applications.  相似文献   

9.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

10.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

11.
Bacterial quorum sensing and cell surface electrokinetic properties   总被引:4,自引:0,他引:4  
The hypothesis tested in this paper is that quorum sensing influences the microbial surface electrokinetic properties. Escherichia coli MG1655 and MG1655 LuxS- mutant (lacking quorum-sensing gene for Autoinducer synthase AI-2) were used for this study. AI-2 production (or lack of) in both strains was analyzed using the Vibrio harveyi bioassay. The levels of extracellular AI-2 with and without glucose in the growth medium were consistent with previously published work. The surface electrokinetic properties were determined for each strain of E. coli MG1655 by measuring the electrophoretic mobility using a phase amplitude light-scattering (PALS) Zeta potential analyser. The findings show that the surface charge of the cells is dependent upon the stage in the growth phase as well as the ability to participate in quorum sensing. In addition, significant differences in the electrophoretic mobility were observed between both strains of E. coli. These findings suggest that quorum sensing plays a significant role in the surface chemistry of bacteria during their growth.  相似文献   

12.
群体感应信号分子AI-2研究进展   总被引:9,自引:0,他引:9  
群体感应(QS)是细菌根据种群密度的变化调控基因表达,协调群体行为的机制。除具有种特异性的信号分子AI-1外,近年来发现一类新的信号分子AI-2在调控细菌基因表达中起重要作用。AI-2的结构和生物合成途径已被确定,其产生依赖于一种称为LuxS的蛋白。目前认为AI-2在细菌种间交流中起通用信号分子(universalsignal)的作用。了解细菌的QS调控过程以及种间细胞交流的新机制,有助于对细菌病害进行防治。  相似文献   

13.
Many reports have elucidated the mechanisms and consequences of bacterial quorum sensing (QS), a molecular communication system by which bacterial cells enumerate their cell density and organize collective behavior. In few cases, however, the numbers of bacteria exhibiting this collective behavior have been reported, either as a number concentration or a fraction of the whole. Not all cells in the population, for example, take on the collective phenotype. Thus, the specific attribution of the postulated benefit can remain obscure. This is partly due to our inability to independently assemble a defined quorum, for natural and most artificial systems the quorum itself is a consequence of the biological context (niche and signaling mechanisms). Here, we describe the intentional assembly of quantized quorums. These are made possible by independently engineering the autoinducer signal transduction cascade of Escherichia coli (E. coli) and the sensitivity of detector cells so that upon encountering a particular autoinducer level, a discretized sub-population of cells emerges with the desired phenotype. In our case, the emergent cells all express an equivalent amount of marker protein, DsRed, as an indicator of a specific QS-mediated activity. The process is robust, as detector cells are engineered to target both large and small quorums. The process takes about 6 h, irrespective of quorum level. We demonstrate sensitive detection of autoinducer-2 (AI-2) as an application stemming from quantized quorums. We then demonstrate sub-population partitioning in that AI-2-secreting cells can ‘call'' groups neighboring cells that ‘travel'' and establish a QS-mediated phenotype upon reaching the new locale.  相似文献   

14.
15.
The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.  相似文献   

16.
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.  相似文献   

17.
Like many other gram-negative bacteria, the human pathogen Vibrio vulnificus is induced into a viable but nonculturable (VBNC) state by incubation at low temperatures. The ability of any bacterium to resuscitate from this dormant state would appear to be essential if the VBNC state is truly a survival strategy. The question as to whether the culturable cells which appear following removal of the inducing stress are a result of true resuscitation or of regrowth of a few residual culturable cells has long been debated. V. vulnificus was examined for its ability to resuscitate from this state following a temperature upshift. Several lines of investigation, including dilution studies, determination of the time necessary for appearance of a culturable population, and the effects of nutrient on recovery, all indicated that, at least for V. vulnificus, true resuscitation does occur. Our studies further suggest that nutrient is in some way inhibitory to the resuscitation of cells in the VBNC state and that studies which add nutrient in an attempt to detect resuscitation are able to detect only residual culturable cells which might be present and which were not inhibited by the added nutrient.  相似文献   

18.
19.
Nanofactories are nano-dimensioned and comprised of modules serving various functions that alter the response of targeted cells when deployed by locally synthesizing and delivering cargo to the surfaces of the targeted cells. In its basic form, a nanofactory consists of a minimum of two functional modules: a cell capture module and a synthesis module. In this work, magnetic nanofactories that alter the response of targeted bacteria by the localized synthesis and delivery of the "universal" bacterial quorum sensing signal molecule autoinducer AI-2 are demonstrated. The magnetic nanofactories consist of a cell capture module (chitosan-mag nanoparticles) and an AI-2 biosynthesis module that contains both AI-2 biosynthetic enzymes Pfs and LuxS on a fusion protein (His-LuxS-Pfs-Tyr, HLPT) assembled together. HLPT is hypothesized to be more efficient than its constituent enzymes (used separately) at conversion of the substrate SAH to product AI-2 on account of the proximity of the two enzymes within the fusion protein. HLPT is demonstrated to be more active than the constituent enzymes, Pfs and LuxS, over a wide range of experimental conditions. The magnetic nanofactories (containing bound HLPT) are also demonstrated to be more active than free, unbound HLPT. They are also shown to elicit an increased response in targeted Escherichia coli cells, due to the localized synthesis and delivery of AI-2, when compared to the response produced by the addition of AI-2 directly to the cells. Studies investigating the universality of AI-2 and unraveling AI-2 based quorum sensing in bacteria using magnetic nanofactories are envisioned. The prospects of using such multi-modular nanofactories in developing the next generation of antimicrobials based on intercepting and interrupting quorum sensing based signaling are discussed.  相似文献   

20.
Vibrio vulnificus, an important food-borne pathogen, is known to enter viable but nonculturable (VBNC) state under low temperature and low nutrition stress conditions. Present study examined the time required for induction of VBNC state and temperature which induces resuscitation of V. vulnificus YJ016. The change in cell morphology and gene expression during VBNC state and in resuscitated cells was also examined. V. vulnificus incubated in artificial sea water at 4 °C entered VBNC state after considerably extended time (70 days). An increase in temperature by 6 °C from the VBNC induction temperature (4 °C) resulted in resuscitation of VBNC cells; however, maximum resuscitation was observed when VBNC cells were held at 23 °C for 24 h. VBNC cells changed their morphology from comma shape to coccoid shape. Two rounds of induction of VBNC and resuscitation were possible with V. vulnificus cells; however, there was progressive reduction in number of resuscitated cells and after 190 days cells failed to resuscitate. Significant up-regulation of genes related to membrane proteins [porinH (10.4-fold), ompU (2.9-fold)], regulatory proteins [envZ (5.6-fold), toxR (4.5-fold), toxS (4.8-fold)], oxidative stress related protein katG (2.3-fold), cell division/maintenance proteins [ftsZ (4.3), mreB (6.5-fold)] and resuscitating promoter factor yeaZ (fourfold) was observed during resuscitation with respect to VBNC state indicating that these genes play a role during resuscitation. Gene expression data presented here would enhance our understanding of resuscitation of V. vulnificus from VBNC state. The results also highlight the importance of maintenance of low temperature during storage of seafood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号