首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.  相似文献   

2.
The spike glycoprotein (S) of recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) targets the cellular receptor, dipeptidyl peptidase 4 (DPP4). Sequence comparison and modeling analysis have revealed a putative receptor-binding domain (RBD) on the viral spike, which mediates this interaction. We report the 3.0 Å-resolution crystal structure of MERS-CoV RBD bound to the extracellular domain of human DPP4. Our results show that MERS-CoV RBD consists of a core and a receptor-binding subdomain. The receptor-binding subdomain interacts with DPP4 β-propeller but not its intrinsic hydrolase domain. MERS-CoV RBD and related SARS-CoV RBD share a high degree of structural similarity in their core subdomains, but are notably divergent in the receptor-binding subdomain. Mutagenesis studies have identified several key residues in the receptor-binding subdomain that are critical for viral binding to DPP4 and entry into the target cell. The atomic details at the interface between MERS-CoV RBD and DPP4 provide structural understanding of the virus and receptor interaction, which can guide development of therapeutics and vaccines against MERS-CoV infection.  相似文献   

3.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.  相似文献   

4.
Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection.  相似文献   

5.
A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine.  相似文献   

6.
Middle-East Respiratory Syndrome coronavirus (MERS-CoV) was identified to cause severe respiratory infection in humans since 2012. The continuing MERS epidemic with a case-fatality of more than 30 % poses a major threat to public health worldwide. Currently, the pathogenesis of human MERS-CoV infection remains poorly understood. We reviewed experimental findings from human primary cells and ex vivo human lung tissues, as well as those from animal studies, so as to understand the pathogenesis and high case-fatality of MERS. Human respiratory epithelial cells are highly susceptible to MERS-CoV and can support productive viral replication. However, the induction of antiviral cytokines and proinflammatory cytokines/chemokines are substantially dampened in the infected epithelial cells, due to the antagonistic mechanisms evolved by the virus. MERS-CoV can readily infect and robustly replicate in human macrophages and dendritic cells, triggering the aberrant production of proinflammatory cytokines/chemokines. MERS-CoV can also effectively infect human primary T cells and induce massive apoptosis in these cells. Although data from clinical, in vitro and ex vivo studies suggested the potential for virus dissemination, extrapulmonary involvement in MERS patients has not been ascertained due to the lack of autopsy study. In MERS-CoV permissive animal models, although viral RNA can be detected from multiple organs of the affected animals, the brain of human DPP4-transgenic mouse was the only extrapulmonary organ from which the infectious virus can be recovered. More research findings on the pathogenesis of MERS and the tissue tropisms of MERS-CoV may help to improve the treatment and infection control of MERS.  相似文献   

7.
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367–606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients’ lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.  相似文献   

8.
中东呼吸道综合征冠状病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)是继SARS冠状病毒(SARS-CoV)之后新近出现的又一种能够引发严重呼吸道感染的人类新发冠状病毒. MERS-CoV于2012年9月首次在中东一些国家被发现,截至2013年9月7日,MERS-CoV已经引起114例感染病例,其中54人死亡,死亡率约50%. 病毒受体研究为MERS-CoV等人类新发冠状病毒进化和跨种传播机制提供重要依据.最近,Raj等在Nature发表文章,首次报道了二肽基肽酶4(dipeptidyl peptidase 4,DPP4;又名CD26)为MERS-CoV感染细胞的功能性受体.MERS-CoV功能性受体的发现为人类新冠状病毒溯源和跨种进化研究、病毒传染和流行病学特征分析以及抗病毒药物和疫苗研究提供重要基础.  相似文献   

9.
The spike (S) protein of the recently emerged human Middle East respiratory syndrome coronavirus (MERS-CoV) mediates infection by binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). Here we mapped the receptor binding domain in the S protein to a 231-amino-acid fragment (residues 358 to 588) by evaluating the interaction of spike truncation variants with receptor-expressing cells and soluble DPP4. Antibodies to this domain—much less so those to the preceding N-terminal region—efficiently neutralize MERS-CoV infection.  相似文献   

10.
Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor—dipeptidyl peptidase 4 (DPP4)—is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.  相似文献   

11.
A novel coronavirus, the Middle East respiratory syndrome coronavirus, recently emerged through zoonotic transmission, causing a severe lower respiratory tract infection in humans. In two recent papers, one published in Cell Research, the crystal structure of the viral receptor-binding domain in complex with the host CD26/dipeptidyl peptidase 4 receptor has now been characterized.In mid 2012, a novel coronavirus (CoV) was isolated form the sputum of a patient with acute pneumonia and renal failure1. As of July 10th 2013, this virus, named Middle East respiratory syndrome (MERS)-CoV, has caused 80 laboratory-confirmed infections of which 44 were fatal2. The limited data available suggest that the virus is introduced into the human population through multiple independent, zoonotic transmission events from a — so far unknown — animal source with subsequent limited human-to-human spread. However, scenarios in which a single zoonotic transmission event has led to sustained, largely asymptomatic and non-detected human-to-human transmission cannot be excluded yet. Genetically, MERS-CoV is related to SARS-CoV, which killed nearly 10% of approximately 8 000 persons that were infected in the 2003 outbreak. It is therefore of utmost importance to better understand the biology and pathogenesis of this virus.Coronaviruses infect mammals and birds, and occasionally cross the species barrier. The primary determinant of coronavirus host and cell tropism is the viral spike (S) entry protein that functions by binding to a cell surface receptor. The MERS-CoV S protein is a type I membrane glycoprotein, assembled as trimers that constitute the typical crown-like peplomers on the surface of the enveloped coronavirus. Functionally, two regions, S1 and S2, can be defined in the S protein, which are involved in binding and fusion with host cells, respectively. Recent studies have mapped the receptor-binding domain (RBD) to a ∼231-amino acid long region within the S1 region of MERS-CoV3.MERS-CoV uses a cell surface amino peptidase, dipeptidyl peptidase 4 (DPP4), also known as CD26, as a functional receptor4. The multifunctional DPP4 — highly conserved among mammals — plays a major role in glucose metabolism by its degradation of incretins. It has been further implicated in T-cell activation, chemotaxis modulation, cell adhesion, and apoptosis5. In humans, it is primarily expressed on the epithelial cells in the lungs, kidney, small intestine, liver and prostate, and on activated leukocytes, while it also occurs in a soluble form in the circulation4,5.The spike-receptor binding interface can be seen as a lock-and-key interaction where minor mutations within the interacting domain of the S protein or the receptor can abrogate infection, placing a barrier for cross-species transmission. Zoonotic potential of coronaviruses has been attributed to the adaptability of the S protein to human receptor orthologs. Intriguingly, the MERS-CoV S protein seems promiscuous in binding to orthologous receptors. Whereas coronaviruses generally tend to have a narrow host tropism, MERS-CoV can infect cells of a wide variety of species, at least in vitro4,6. The broad cell species tropism suggests that MERS-CoV has acquired facile cross-species transmissibility by binding to an evolutionarily conserved receptor.Just four months after the discovery of the receptor, two Chinese research teams have now independently described the MERS-CoV spike-receptor interface. The study by Wang et al.7 recently published in Cell Research, and a recent study by Lu et al.8 published in Nature, both reveal the crystal structure of the RBD of the MERS-CoV S protein bound to its receptor, human DPP4. DPP4, of which the structure was published before9, consists of an N-terminal eight-bladed β-propeller domain and a C-terminal α/β-hydrolase domain. The RBD of the MERS-CoV S protein contains two subdomains: a conserved core subdomain and a receptor-binding subdomain, with the latter contacting blades 4 and 5 of the DPP4 β-propeller domain. Structural comparison with the RBD of the related betacoronavirus SARS-CoV (using the ACE2 peptidase as a receptor) reveals a conserved core domain and highly variable — both in length and in residues — receptor-binding region, explaining the differential receptor usage.Both teams have scrutinized the RBD-receptor interface and identified critical residues within the interacting domain of the S protein or receptor, which allow MERS-CoV to bind to its receptor. Structural analysis and mutational analysis have identified several key residues in the RBD of the S protein shown to be critical for DPP4 binding and viral entry. This information is crucial to understand the adaptation of MERS-CoV to humans. Studies with SARS-CoV isolated from humans and civet cats (which function as the intermediate host) revealed 2 amino acids in the RBD that caused an > 1 000-fold difference in binding affinity to human receptor ACE210. Analysis of the MERS-CoV RBD sequences of the isolates characterized thus far shows no sequence variation except that 2 virus samples isolated from patients in the UK (GenBank: KC667074 and KC164505) had a leucine-to-phenylalanine substitution at position 506 of the S protein (L506F). As shown by Wang et al.7, residue L506 contacts DPP4 and its substitution to alanine reduced MERS-CoV S-mediated infectivity by over 50%.With the structure available, the promiscuous binding of MERS-CoV to DPP4 orthologs can now be analyzed at the molecular level. Relevant to functional usage of orthologous receptors by MERS-CoV is the degree of conservation of the amino acid residues in DPP4 that were identified to contact the viral RBD7,8. DPP4 sequence comparison reveals that mammalian DPP4 orthologs (e.g., of macaque, horse, rabbit and pig) have no or little variation for residues contacting MERS-CoV RBD in human DPP4 (
Open in a separate window1 Critical residues in DPP4, which contact the MERS-CoV RBD, identified by Wang et al.7 and Lu et al.8. Position (human DPP4 numbering) and single-letter identity of RBD-contacting residues are indicated;2% identity of RBD-contacting residues in relative to those in human DPP4;3 unpublished results from BLH.In conclusion, knowing the molecular details of the coronavirus-receptor interface will be highly instrumental in predicting interactions between MERS-CoV and orthologous receptors and mutation-driven host range expansion, and may help to identify susceptible host species and hence the host reservoir(s) for MERS-CoV. In addition, the structural information of the interface between the S protein and the receptor may provide novel strategies for developing effective antibodies or drugs that target the spike-receptor interface.  相似文献   

12.
中东呼吸综合征冠状病毒假病毒系统的建立及其在中和抗体检测中的应用     
李琳  郭彦  赵光宇  于虹  孙世惠  潘婷  唐健  周育森  樊卫平 《生物技术通讯》2014,(2):194-197
目的:为了避免中东呼吸综合征冠状病毒(MERS-CoV)感染与中和试验中操作活病毒带来的生物安全隐患,构建只具有一次感染能力而无复制能力的MERS假病毒,建立MERS假病毒系统,并应用于中和抗体检测。方法:构建含有MERS-CoV S基因的重组质粒pcDNA3.1-MERS-S,与缺失Env基因、含有萤光素酶报告基因的HIV-1骨架质粒pNL4-3.Luc.RE共转染293T细胞,收获含有假病毒的上清;通过Western印迹、细胞感染实验和血清中和试验,确定是否包装出MERS假病毒,及是否能有效应用于细胞感染与中和试验。结果:MERS假病毒pMERS-S培养上清经Western印迹鉴定出相对分子质量为25×103的HIV-1 P24蛋白和相对分子质量为180×103的MERS-CoV S蛋白;与阴性对照假病毒pEnv-相比,pMERS-S能有效感染MERS-CoV敏感细胞系Huh-7,在感染细胞中产生荧光信号,感染细胞的假病毒量与产生的荧光信号呈明显的量效关系;在MERS假病毒中和试验中,pMERS-S能被MERS-CoV中和抗体中和而失去感染力,反映抗体对MERS-CoV的中和活性。结论:建立了不依赖于BSL-3高等级生物安全条件的MERS假病毒系统,并有效应用于中和抗体检测,为MERS-CoV疫苗、药物评价及病毒致病机制研究提供了良好的技术支撑手段。  相似文献   

13.
Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates     
Christian Selinger  Jennifer Tisoncik-Go  Vineet D Menachery  Sudhakar Agnihothram  G Lynn Law  Jean Chang  Sara M Kelly  Pavel Sova  Ralph S Baric  Michael G Katze 《BMC genomics》2014,15(1)
  相似文献   

14.
Inhibition of Middle East Respiratory Syndrome Coronavirus Infection by Anti-CD26 Monoclonal Antibody     
Kei Ohnuma  Bart L. Haagmans  Ryo Hatano  V. Stalin Raj  Huihui Mou  Satoshi Iwata  Nam H. Dang  Berend Jan Bosch  Chikao Morimoto 《Journal of virology》2013,87(24):13892-13899
We identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also significantly inhibited infection. These findings indicate that both 2F9 and YS110 are potential therapeutic agents for MERS-CoV infection. YS110, in particular, is a good candidate for immediate testing as a therapeutic modality for MERS.  相似文献   

15.
Modulation of the immune response by Middle East respiratory syndrome coronavirus     
Somayeh Shokri  Shahab Mahmoudvand  Reza Taherkhani  Fatemeh Farshadpour 《Journal of cellular physiology》2019,234(3):2143-2151
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   

16.
Middle East Respiratory Syndrome Coronavirus Accessory Protein 4a Is a Type I Interferon Antagonist     
Daniela Niemeyer  Thomas Zillinger  Doreen Muth  Florian Zielecki  Gabor Horvath  Tasnim Suliman  Winfried Barchet  Friedemann Weber  Christian Drosten  Marcel A. Müller 《Journal of virology》2013,87(22):12489-12495
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory infection with as yet unclear epidemiology. We previously showed that MERS-CoV counteracts parts of the innate immune response in human bronchiolar cells. Here we analyzed accessory proteins 3, 4a, 4b, and 5 for their abilities to inhibit the type I interferon response. Accessory protein 4a was found to block interferon induction at the level of melanoma differentiation-associated protein 5 (MDA5) activation presumably by direct interaction with double-stranded RNA.  相似文献   

17.
Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein     
Asisa Volz  Alexandra Kupke  Fei Song  Sylvia Jany  Robert Fux  Hosam Shams-Eldin  J?rg Schmidt  Christin Becker  Markus Eickmann  Stephan Becker  Gerd Sutter 《Journal of virology》2015,89(16):8651-8656
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans. We tested a recombinant modified vaccinia virus Ankara (MVA) vaccine expressing full-length MERS-CoV spike (S) glycoprotein by immunizing BALB/c mice with either intramuscular or subcutaneous regimens. In all cases, MVA-MERS-S induced MERS-CoV-specific CD8+ T cells and virus-neutralizing antibodies. Vaccinated mice were protected against MERS-CoV challenge infection after transduction with the human dipeptidyl peptidase 4 receptor. This MERS-CoV infection model demonstrates the safety and efficacy of the candidate vaccine.  相似文献   

18.
Crystal Structure of the Receptor-Binding Domain from Newly Emerged Middle East Respiratory Syndrome Coronavirus     
Yaoqing Chen  Kanagalaghatta R. Rajashankar  Yang Yang  Sudhakar S. Agnihothram  Chang Liu  Yi-Lun Lin  Ralph S. Baric  Fang Li 《Journal of virology》2013,87(19):10777-10783
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 77 people, with a fatality rate of more than 50%. Alarmingly, the virus demonstrates the capability of human-to-human transmission, raising the possibility of global spread and endangering world health and economy. Here we have identified the receptor-binding domain (RBD) from the MERS-CoV spike protein and determined its crystal structure. This study also presents a structural comparison of MERS-CoV RBD with other coronavirus RBDs, successfully positioning MERS-CoV on the landscape of coronavirus evolution and providing insights into receptor binding by MERS-CoV. Furthermore, we found that MERS-CoV RBD functions as an effective entry inhibitor of MERS-CoV. The identified MERS-CoV RBD may also serve as a potential candidate for MERS-CoV subunit vaccines. Overall, this study enhances our understanding of the evolution of coronavirus RBDs, provides insights into receptor recognition by MERS-CoV, and may help control the transmission of MERS-CoV in humans.  相似文献   

19.
Laboratory Investigation and Phylogenetic Analysis of an Imported Middle East Respiratory Syndrome Coronavirus Case in Greece     
Athanasios Kossyvakis  Ying Tao  Xiaoyan Lu  Vasiliki Pogka  Sotirios Tsiodras  Mary Emmanouil  Andreas F. Mentis  Suxiang Tong  Dean D. Erdman  Antonios Antoniadis 《PloS one》2015,10(4)
Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV) infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR) assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient’s history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract.  相似文献   

20.
A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein     
Yan Li  Yuhua Wan  Peipei Liu  Jincun Zhao  Guangwen Lu  Jianxun Qi  Qihui Wang  Xuancheng Lu  Ying Wu  Wenjun Liu  Buchang Zhang  Kwok-Yung Yuen  Stanley Perlman  George F Gao  Jinghua Yan 《Cell research》2015,25(11):1237-1249
The newly-emerging Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans. Despite global efforts, the potential for an associated pandemic in the future cannot be excluded. The development of effective counter-measures is urgent. MERS-CoV-specific anti-viral drugs or vaccines are not yet available. Using the spike receptor-binding domain of MERS-CoV (MERS-RBD) to immunize mice, we identified two neutralizing monoclonal antibodies (mAbs) 4C2 and 2E6. Both mAbs potently bind to MERS-RBD and block virus entry in vitro with high efficacy. We further investigated their mechanisms of neutralization by crystallizing the complex between the Fab fragments and the RBD, and solved the structure of the 4C2 Fab/MERS-RBD complex. The structure showed that 4C2 recognizes an epitope that partially overlaps the receptor-binding footprint in MERS-RBD, thereby interfering with the virus/receptor interactions by both steric hindrance and interface-residue competition. 2E6 also blocks receptor binding, and competes with 4C2 for binding to MERS-RBD. Based on the structure, we further humanized 4C2 by preserving only the paratope residues and substituting the remaining amino acids with the counterparts from human immunoglobulins. The humanized 4C2 (4C2h) antibody sustained similar neutralizing activity and biochemical characteristics to the parental mouse antibody. Finally, we showed that 4C2h can significantly abate the virus titers in lungs of Ad5-hCD26-transduced mice infected with MERS-CoV, therefore representing a promising agent for prophylaxis and therapy in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号