首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lei  Chengfeng  Yang  Jian  Hu  Jia  Sun  Xiulian 《中国病毒学》2021,36(1):141-144
正Dear Editor The most important property of a virus is its infectivity. To measure infectivity, one can assay viral replication in cells to obtain a titer for a given virus stock. A titer is defined as a given number of infectious viral units per unit volume,and an infectious unit is the smallest amount of virus that produces recognizable effects [e.g., cytopathic effect(CPE), dot blot immunoreactivity]. The median tissue culture infectious dose (TCID_(50)) is defined as the dilution of a virus required to infect 50%of a given cell culture.  相似文献   

2.
3.
Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.  相似文献   

4.
Human norovirus (huNoV) and hepatitis A virus (HAV) have been involved in several produce-associated outbreaks and identified as major food-borne viral etiologies. In this study, the survival of huNoV surrogates (murine norovirus [MNV] and Tulane virus [TV]) and HAV was investigated on alfalfa seeds during storage and postgermination. Alfalfa seeds were inoculated with MNV, TV, or HAV with titers of 6.46 ± 0.06 log PFU/g, 3.87 ± 0.38 log PFU/g, or 7.01 ± 0.07 log 50% tissue culture infectious doses (TCID50)/g, respectively. Inoculated seeds were stored for up to 50 days at 22°C and sampled during that storage period on days 0, 2, 5, 10, and 15. Following storage, virus presence was monitored over a 1-week germination period. Viruses remained infectious after 50 days, with titers of 1.61 ± 0.19 log PFU/g, 0.85 ± 0.21 log PFU/g, and 3.43 ± 0.21 log TCID50/g for MNV, TV, and HAV, respectively. HAV demonstrated greater persistence than MNV and TV, without a statistically significant reduction over 20 days (<1 log TCID50/g); however, relatively high levels of genomic copies of all viruses persisted over the testing time period. Low titers of viruses were found on sprouts and were located in all tissues as well as in sprout-spent water sampled on days 1, 3, and 6 following seed planting. Results revealed the persistence of viruses in seeds for a prolonged period of time, and perhaps of greater importance these data suggest the ease of which virus may transfer from seeds to sprouts and spent water during germination. These findings highlight the importance of sanitation and prevention procedures before and during germination.  相似文献   

5.
Foodborne outbreaks of human noroviruses (HuNoVs) are frequently associated with leafy greens. Because there is no effective method to eliminate HuNoV from postharvest leafy greens, understanding virus survival under preharvest conditions is crucial. The objective of this study was to evaluate the survival of HuNoV and its surrogate viruses, murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV), on preharvest lettuce and spinach that were subjected to abiotic stress (physical damage, heat, or flood). We also examined the bacteria culturable from the phyllosphere in response to abiotic stress and in relation to viral persistence. Mature plants were subjected to stressors 2 days prior to inoculation of the viruses on leaves. We quantified the viral RNA, determined the infectivity of the surrogates, and performed bacterial counts on postinoculation days (PIDs) 0, 1, 7, and 14. For both plant types, time exerted significant effects on HuNoV, MNV, SaV, and TV RNA titers, with greater effects being seen for the surrogates. Infectious surrogate viruses were undetectable on PID 14. Only physical damage on PID 14 significantly enhanced HuNoV RNA persistence on lettuce, while the three stressors differentially enhanced the persistence of MNV and TV RNA. Bacterial counts were significantly affected by time and plant type but not by the stressors. However, bacterial counts correlated significantly with HuNoV RNA titers on spinach and with the presence of surrogate viruses on both plant types under various conditions. In conclusion, abiotic stressors and phyllosphere bacterial density may differentially influence the survival of HuNoV and its surrogates on lettuce and spinach, emphasizing the need for the use of preventive measures at the preharvest stage.  相似文献   

6.
7.
A bioassay of mosquito iridescent virus (MIV) of Aedes taeniorhynchus was developed using cell cultures of Aedes aegypti. The dilution end point technique was based on the occurrence of cytopathic effects which were optimum at 31°C. Peleg's A. aegypti cell line was more sensitive and reliable than Singh's A. aegypti cell line for infectivity titration of the “R” and “T” strains of MIV. The highest tissue culture infectivity dose 50s (TCID50) were elicited by virion:cell ratios of approximately 10. TCID50 titers were significantly reduced by virus neutralization with either homologous or heterologous antiserum to either RMIV or TMIV. The virus propagated in either cell line was not infectious to A. taeniorhynchus larvae, or to the respective cells from which the virus was produced. All plaque assay attempts were unsuccessful.  相似文献   

8.
9.
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.  相似文献   

10.
Gene therapy vectors have been developed from autonomous rodent parvoviruses that carry a therapeutic gene or a marker gene in place of the genes encoding the capsid proteins. These vectors are currently evaluated in preclinical experiments. The infectivity of the vector particles deriving from the fibroblastic strain of minute virus of mice (MVMp) (produced by transfection in human cells) was found to be far less (approximately 50-fold-less) infectious than that of wild-type virus particles routinely produced by infection of A9 mouse fibroblasts. Similarly, wild-type MVMp produced by transfection also had a low infectivity in mouse cells, indicating that the method and producer cells influence the infectivity of the virus produced. Interestingly, producer cells made as many full vector particles as wild-type particles, arguing against deficient packaging being responsible for the low infectivity of viruses recovered from transfected cells. The hurdle to infection with full particles produced through transfection was found to take place at an early step following entry and limiting viral DNA replication and gene expression. Infections with transfection or infection-derived virus stocks normalized for their replication ability yielded similar monomer and dimer DNA amplification and gene expression levels. Surprisingly, at equivalent replication units, the capacity of parvovirus vectors to kill tumor cells was lower than that of the parental wild-type virus produced under the same transfection conditions, suggesting that beside the viral nonstructural proteins, the capsid proteins, assembled capsids, or the corresponding coding region contribute to the lytic activity of these viruses.  相似文献   

11.
12.
衣壳蛋白靶向灭活策略应用于抗登革病毒感染的研究   总被引:1,自引:0,他引:1  
衣壳蛋白靶向病毒灭活是近年来新兴的抗病毒策略。为探索该策略在抗登革病毒感染中的应用 ,首先建立了稳定表达登革 2型病毒衣壳蛋白 (D2C)与葡萄球菌核酸酶 (SN)融合蛋白D2C_SN的哺乳动物细胞系 ,然后以登革病毒攻击上述细胞系 ,研究表达的融合蛋白D2C_SN对产生的子代病毒颗粒感染性的影响。结果表明融合蛋白D2C_SN能够在病毒装配过程中与野生型衣壳蛋白共组装入子代病毒颗粒内部 ,并导致病毒基因组的降解。与正常BHK细胞相比较 ,融合蛋白D2C_SN可导致产生的子代病毒感染性滴度降低 10 3~ 10 4 ,显示出很强的抗病毒效果  相似文献   

13.
14.
The purpose of the present study was to examine the efficacy and mechanism of the PAB (para-amino benzamidine) affinity column chromatography, Viresolve NFP virus filtration, pasteurization (60°C heat treatment for 10 h), and lyophilization steps employed in the manufacture of urokinase from human urine as regards the removal and/or inactivation of the hepatitis A virus (HAV). Samples from the relevant stages of the production process were spiked with HAV and subjected to scale-down processes mimicking the manufacture of urokinase. Samples were collected at each step, immediately titrated using a 50% tissue culture infectious dose (TCID50), and the virus reduction factors evaluated. PAB chromatography was found to be an effective step for removing HAV with a log reduction factor of 3.24. HAV infectivity was rarely detected in the urokinase fraction, while most of the HAV infectivity was recovered in the unbound and wash fractions. HAV was completely removed during the vire solve NFP filtration with a log reduction factor of ≥4.60. Pasteurization was also found to be an effective step in inactivating HAV, where the titers were reduced from an initial titer of 7.18 log10 TCID50 to undetectable levels within 10 h of treatment. The log reduction factor achieved during pasteurization was ≥4.76. Lyophilization revealed the lowest efficacy for inactivating HAV with a log reduction factor of 1.48. The cumulative log reduction factor was ≥14.08. Accordingly, these results indicate that the production process for urokinase exhibited a sufficient HAV reducing capacity to achieve a high margin of virus safety.  相似文献   

15.
16.
A cytoplasmic polyhedrosis virus (CPV) from Chrysodeixis eriosoma (Lepidoptera: Noctuidae) replicated in Spodoptera frugiperda cells. Low rates of infection were achieved, even at high multiplicities of infection and TCID50 assays showed that there was negligible release of virus particles from infected cells. In an infected focus assay, based on formation of PIB, the dose-response data demonstrated that a single particle could initiate infection. No loss of infectivity occurred in virus preparations stored at 4°, ?20°, or ?90°C, but infectivity of virus stored at 20°C declined sharply. A small isometric virus contaminant was present in some CPV preparations and its interaction with the CPV is discussed. Limited CPV infection was achieved in Trichoplusia ni cells, but attempts to infect Aedes aegypti cells were unsuccessful.  相似文献   

17.
Infectivity of RNA from Inactivated Poliovirus   总被引:2,自引:1,他引:1       下载免费PDF全文
During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72°C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22°C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.  相似文献   

18.
Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.  相似文献   

19.
The mechanism of enterovirus inactivation by marine bacteria was investigated using poliovirus type 1 as a model virus and with strains of Pseudomonas and Vibrio isolated from the marine environment. Treatment of virus with cell-free filtrates from late log phase bacterial cultures produced alterations in the viral capsid as shown by a reduction in efficiency of adsorption to host cells, increased sensitivity to ribonuclease, and by the release of ribonucleic acid from the treated virions. Filtration of 14C-labelled, treated virus through 25-nm filters revealed that the majority of the isotope (85-96%) passed the filters, indicating extensive capsid disruption. However, the most rapid and pronounced change observed during virus inactivation was the loss of infectivity, suggesting that enzymatic degradation is not the first event in the poliovirus inactivation process by marine bacteria.  相似文献   

20.
Inactivation of Caliciviruses   总被引:10,自引:7,他引:3       下载免费PDF全文
The viruses most commonly associated with food- and waterborne outbreaks of gastroenteritis are the noroviruses. The lack of a culture method for noroviruses warrants the use of cultivable model viruses to gain more insight on their transmission routes and inactivation methods. We studied the inactivation of the reported enteric canine calicivirus no. 48 (CaCV) and the respiratory feline calicivirus F9 (FeCV) and correlated inactivation to reduction in PCR units of FeCV, CaCV, and a norovirus. Inactivation of suspended viruses was temperature and time dependent in the range from 0 to 100°C. UV-B radiation from 0 to 150 mJ/cm2 caused dose-dependent inactivation, with a 3 D (D = 1 log10) reduction in infectivity at 34 mJ/cm2 for both viruses. Inactivation by 70% ethanol was inefficient, with only 3 D reduction after 30 min. Sodium hypochlorite solutions were only effective at >300 ppm. FeCV showed a higher stability at pH <3 and pH >7 than CaCV. For all treatments, detection of viral RNA underestimated the reduction in viral infectivity. Norovirus was never more sensitive than the animal caliciviruses and profoundly more resistant to low and high pH. Overall, both animal viruses showed similar inactivation profiles when exposed to heat or UV-B radiation or when incubated in ethanol or hypochlorite. The low stability of CaCV at low pH suggests that this is not a typical enteric (calici-) virus. The incomplete inactivation by ethanol and the high hypochlorite concentration needed for sufficient virus inactivation point to a concern for decontamination of fomites and surfaces contaminated with noroviruses and virus-safe water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号