首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release and activation of matrix metalloproteinases (MMPs) significantly contribute to myocardial stunning injury immediately after ischemia and reperfusion, however, their role in preconditioning remains unknown. We therefore examined the effects of preconditioning and subsequent ischemia/reperfusion on MMP activity in isolated rat hearts. Hearts were subjected to a preconditioning protocol (three consecutive 5-min periods of global ischemia interspersed with 5 min of reperfusion) followed by 30 min ischemia and 5 min reperfusion. To measure MMP release, coronary effluent was collected: (a) during aerobic perfusion, (b) in reperfusion following each preconditioning ischemia, and (c) during the final reperfusion following test ischemia. MMP-2 activities could be detected by gelatin zymography in the ventricles and coronary effluent samples from the perfused hearts. The levels of MMP-2 activity in the effluent were markedly increased in effluent following test ischemia from control hearts without preconditioning. This was accompanied by a decrease in corresponding tissue MMP activities. Preconditioning significantly decreased the MMP-2 activity in the coronary effluent following test ischemia/reperfusion and preserved the MMP-2 protein content and activity in the myocardium. Our results demonstrate that classic preconditioning inhibits ischemia/reperfusion induced release and activation of MMP-2. These results suggest that preconditioning may exert part of its cardioprotective effects through the reduction of MMP-2 release.  相似文献   

2.
Wu Q  Zhao Z  Sun H  Hao YL 《生理学报》2008,60(3):327-332
The aim of the present study is to investigate the role of beta(2)-adrenoreceptor (beta(2)-AR) in ischemic preconditioning (IP) in isolated rat heart model of ischemia/reperfusion (I/R). Sprague-Dawley rat hearts were quickly removed, mounted on Langendorff apparatus, and perfused with Krebs-Henseleit (KH) solution. After the initial stabilization period, the rats were randomly divided into 6 groups including control group (perfused for an additional 20 min), IP group (4 cycles of 5 min of ischemia followed by 5 min of reflow), isoproterenol (ISO) group (10 nmol/L ISO perfusion for 5 min followed by 5 min washout), IP + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout IP), ISO + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout ISO treatment), ICI118551 group (55 nmol/L ICI118551 perfusion for 20 min). After these treatments, all hearts were followed by 30 min of no-flow ischemia and 30 min of reperfusion. A computer-based electrophysiological recorder system was used to measure changes of the maximal rate of pressure increase in systole phase (+dp/dt(max)), maximal rate of pressure decrease in diastole phase (-dp/dt(max)), and difference of left ventricular pressure (DeltaLVP). Then cardiomyocytes from these hearts were isolated by 5 min of Ca(2+)-free buffer perfusion and 25 min of collagenase perfusion. The ventricles were chopped and filtered. The myocytes were resuspended in KB buffer. The contraction and the viability of cardiomyocytes were measured. Lactate dehydrogenase (LDH) concentration in coronary effluent was assayed with assay kit. The results showed that both IP and ISO significantly increased the values of +/-dp/dt(max), DeltaLVP, the contraction and viability of cardiomyocytes, shortened the time-to-peak contraction (TTP), and decreased the release of LDH in coronary effluent. ICI118551, a selective beta(2)-AR antagonist, blocked these effects. Either the time-to-50% relaxation (R(50)) or the time-to-100% relaxation (R(100)) had no significant differences between groups. Our results indicate that the cardioprotection of IP was mediated by beta(2)-AR in isolated rat hearts subjected to I/R injury.  相似文献   

3.
Normothermic machine perfusion has previously been demonstrated to restore damaged warm ischemic livers to transplantable condition in animal models. However, the mechanisms of recovery are unclear, preventing rational optimization of perfusion systems and slowing clinical translation of machine perfusion. In this study, organ recovery time and major perfusate shortcomings were evaluated using a comprehensive metabolic analysis of organ function in perfusion prior to successful transplantation. Two groups, Fresh livers and livers subjected to 1 hr of warm ischemia (WI) received perfusion for a total preservation time of 6 hrs, followed by successful transplantation. 24 metabolic fluxes were directly measured and 38 stoichiometrically-related fluxes were estimated via a mass balance model of the major pathways of energy metabolism. This analysis revealed stable metabolism in Fresh livers throughout perfusion while identifying two distinct metabolic states in WI livers, separated at t = 2 hrs, coinciding with recovery of oxygen uptake rates to Fresh liver values. This finding strongly suggests successful organ resuscitation within 2 hrs of perfusion. Overall perfused livers regulated metabolism of perfusate substrates according to their metabolic needs, despite supraphysiological levels of some metabolites. This study establishes the first integrative metabolic basis for the dynamics of recovery during perfusion treatment of marginal livers. Our initial findings support enhanced oxygen delivery for both timely recovery and long-term sustenance. These results are expected to lead the optimization of the treatment protocols and perfusion media from a metabolic perspective, facilitating translation to clinical use.  相似文献   

4.
A new two-sensor technique for measurement of O2 consumption in isolated organs without venous cannulation was successfully applied to the isolated rat heart. Because this technique eliminates the net exchange of O2 between venous effluent and the environment, measurement of the O2 concentration is conveniently made by use of a polarographic sensor in a collected pool of effluent at the bottom of a closed organ chamber. The method was validated against conventional techniques using cannulation of the pulmonary artery. The two-sensor technique allows O2 consumption measurements to be made in isolated organ preparations in which representative venous cannulation is prohibitively difficult, for example in organs with multiple venous drains, or those in which cannulation would be expected to cause excessive perturbation of physiological status.  相似文献   

5.
With over 110,000 patients waiting for organ transplantation, the current crisis in organ transplantation is based on a lack of donors after brain-death (DBD). A very large alternative pool of donor organs that remain untapped are the donors after cardiac death (DCD), recovered after cardiac activity has ceased and therefore sustained some ischemic injury. Machine perfusion has been proposed as a novel modality of organ preservation and treatment to render such cadaveric organs, and in particular livers, transplantable. Two key issues that remain unaddressed are how to assess whether a DCD liver is damaged beyond repair, and whether machine perfusion has rendered an injured organ sufficiently viable for transplantation. In this work, we present a metabolic analysis of the transient responses of cadaveric rat livers during normothermic machine perfusion (NMP), and develop an index of ischemia that enables evaluation of the organ ischemic injury level. Further, we perform a discriminant analysis to construct a classification algorithm with >0.98 specificity to identify whether a given perfused liver is ischemic or fresh, in effect a precursor for an index of transplantability and a basis for the use of statistical process control measures for automated feedback control of treatment of ischemic injury in DCD livers. The analyses yield an index based on squared prediction error (SPE) as log(SPE) >1.35 indicating ischemia. The differences between metabolic functions of fresh and ischemic livers during perfusion are outlined and the metabolites that varied significantly for ischemic livers are identified as ornithine, arginine, albumin and tyrosine.  相似文献   

6.
The objective of this study was to establish an experimental model for extracorporeal perfusion of swine uterus. In order to validate this model, we examined some biochemical parameters and determined the effect of oxytocic drugs (Oxytoxin, Prostaglandin E (2)) on extracorporeal perfused swine uteri. Thirty swine uteri were perfused with Krebs-Ringer bicarbonate-glucose buffer for a period up to eleven hours with the aim to preserve a viable organ, which should be responsive to hormones. The intrauterine pressure was recorded after administration of various concentrations of oxytocin and prostaglandin E (2). Perfusate pH, perfusate lactate, partial oxygen and carbon dioxide tensions, oxygen saturation, and hydrogencarbonate levels in the perfusate, all indicators of tissue ischemia or cell necrosis, showed good preservation of the organ for up to seven hours. We examined the relation of intrauterine pressure to oxytocin and prostaglandin E (2). Both were able to induce contractions of the uterus, whereas prostaglandin E (2) produced rhythmical contractions of smaller amplitude and a higher frequency. We could demonstrate that our perfusion system was able to preserve the swine uterus in a functional condition appropriate for the study of physiological questions.  相似文献   

7.

Background

Liver transplantation plays a pivotal role in the treatment of patients with end-stage liver disease. Despite excellent outcomes, the field is strained by a severe shortage of viable liver grafts. To meet high demands, attempts are made to increase the use of suboptimal livers by both pretransplant recovery and assessment of donor livers. Here we aim to assess hepatic injury in the measurement of routine markers in the post-ischemic flush effluent of discarded human liver with a wide warm ischemic range.

Methods

Six human livers discarded for transplantation with variable warm and cold ischemia times were flushed at the end of preservation. The liver grafts were flushed with NaCl or Lactated Ringer’s, 2 L through the portal vein and 1 L through the hepatic artery. The vena caval effluent was sampled and analyzed for biochemical markers of injury; lactate dehydrogenase (LDH), alanine transaminase (ALT), and alkaline phosphatase (ALP). Liver tissue biopsies were analyzed for ATP content and histologically (H&E) examined.

Results

The duration of warm ischemia in the six livers correlated significantly to the concentration of LDH, ALT, and ALP in the effluent from the portal vein flush. No correlation was found with cold ischemia time. Tissue ATP content at the end of preservation correlated very strongly with the concentration of ALP in the arterial effluent (P<0.0007, R2 = 0.96).

Conclusion

Biochemical injury markers released during the cold preservation period were reflective of the duration of warm ischemic injury sustained prior to release of the markers, as well as the hepatic energy status. As such, assessment of the flush effluent at the end of cold preservation may be a useful tool in evaluating suboptimal livers prior to transplantation, particularly in situations with undeterminable ischemic durations.  相似文献   

8.
Minor T  Manekeller S 《Cryobiology》2007,54(2):188-195
Isolated perfusion of rat livers (IPRL) represents an attractive set-up to be used as a an evaluative tool in the easy and reproducible assessment of liver injury, allowing for screening of new approaches to organ preservation without the expenditure of actual transplantation experiments. Depending on the pathology under investigation, controversy exists concerning the inclusion of albumin in the IPRL. The present study evaluates the use of bovine serum albumin (BSA), simultaneously comparing its effect on healthy and ischemically challenged livers in the same model. Rat livers were excised, flushed via portal vein with Histidine-Tryptophan-Ketoglutarate (HTK) solution and preserved for up to 18 h in HTK at 4 degrees C. Perfusion was performed with Krebs-Henseleit buffer with or without addition of 3% BSA. Control preparations were perfused without prior ischemic storage. In the described model, stability of the preparations was documented for up to 120 min of isolated perfusion and addition of 3% BSA had no adverse effects on the viability of nonischemic livers. While liver perfusion without albumin was inappropriate to reveal alterations in parenchymal or vascular integrity after 18 h of cold preservation, albumin in the perfusate significantly and gradually unmasked differences between nonischemic liver preparations and livers stored ischemically for 8 or 18 h. It could be shown that BSA did have a significant modulatory effect on hepatic induction of apoptosis after ischemia in reducing cleavage of caspase 3. The implementation of albumin is advocated since experimental results are pivotally influenced by the presence or absence of this physiologically constitutive compound in the perfusate.  相似文献   

9.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation.These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past.In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved.This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.  相似文献   

10.
The effect of ischemia on myocardial noradrenaline concentration and endogenous noradrenaline output was studied in the isolated perfused rat heart. Following a 15-min stabilization period, regional ischemia was produced by coronary artery ligation. After 60 min of ischemia, noradrenaline concentrations were significantly reduced in the interventricular septum and left ventricle but not in the right ventricle. The reduction in tissue noradrenaline concentration was not prevented when the 60-min ischemia was replaced by a 10-min ischemia followed by a 50-min perfusion. No modification in noradrenaline output was observed during a 60-min ischemia. In contrast, reperfusion was accompanied by a washout of noradrenaline in the coronary effluent, corresponding to only 2% of the amount lost by the tissue. The effect of monoamine oxidase inhibition during the whole ischemic period was studied by perfusing the preparation with pargyline starting 10 min before the artery ligation. Although the administration of pargyline did not alter the noradrenaline output, it did prevent a reduction in myocardial noradrenaline concentration. It was concluded that monoamine oxidase may contribute to the elimination of the noradrenaline lost by the cardiac tissue during ischemia.  相似文献   

11.
Ischemia/reperfusion and hypoxia/reoxygenation of the heart both induce shedding of the coronary endothelial glycocalyx. The processes leading from an oxygen deficit to shedding are unknown. An involvement of resident perivascular cardiac mast cells has been proposed. We hypothesized that either adenosine or inosine or both, generated by nucleotide catabolism, attain the concentrations in the interstitial space sufficient to stimulate A3 receptors of mast cells during both myocardial ischemia/reperfusion and hypoxia/reoxygenation. Isolated hearts of guinea pigs were subjected to either normoxic perfusion (hemoglobin-free Krebs-Henseleit buffer equilibrated with 95% oxygen), 20 minutes hypoxic perfusion (buffer equilibrated with 21% oxygen) followed by 20 minutes reoxygenation, or 20 minutes stopped-flow ischemia followed by 20 minutes normoxic reperfusion (n = 7 each). Coronary venous effluent was collected separately from so-called transudate, a mixture of interstitial fluid and lymphatic fluid appearing on the epicardial surface. Adenosine and inosine were determined in both fluid compartments using high-performance liquid chromatography. Damage to the glycocalyx was evident after ischemia/reperfusion and hypoxia/reoxygenation. Adenosine concentrations rose to a level of 1 μM in coronary effluent during hypoxic perfusion, but remained one order of magnitude lower in the interstitial fluid. There was only a small rise in the level during postischemic perfusion. In contrast, inosine peaked at over 10 μM in interstitial fluid during hypoxia and also during reperfusion, while effluent levels remained relatively unchanged at lower levels. We conclude that only inosine attains levels in the interstitial fluid of hypoxic and postischemic hearts that are sufficient to explain the activation of mast cells via stimulation of A3-type receptors.  相似文献   

12.
The effects of cigarette smoke on the metabolism of exogenous arachidonic acid (AA) were investigated in isolated hamster lungs. Arachidonate was injected into the pulmonary circulation and the metabolites were analysed from the nonrecirculating perfusion effluent by thin layer chromatography. After the pulmonary injection of 66 nmol of 14C-AA about 20 % of the injected radioactivity appreated in the perfusion effluent mostly as metabolites in six minutes. When isolated lungs were ventilated with cigarette smoke during the perfusion, the amounts of PGF, PGE2 and two unidentified metabolite groups increased in the lung effluent. In two other experimental series hamsters were exposed to cigarette smoke before the lung perfusion either once for 30 min or during one hour daily for ten consecutive days. Neither pre-exposures caused any changes in the amounts of arachidonate metabolites in the lung effluent.  相似文献   

13.
黑木耳多糖对抗离体心脏缺血/再灌注损伤的研究   总被引:1,自引:0,他引:1  
目的:探讨黑木耳多糖(AAP)对离体大鼠心脏缺血/再灌注(I/R)损伤的防护作用及其机制。方法:健康雄性SD大鼠灌胃黑木耳多糖(50,100,200mg/(kg.d))4周后,采用离体心脏Langendorff灌流方法,全心停灌30min,复灌120min建立I/R模型。测定左心室动力学指标和再灌注各时间点冠脉流出液中乳酸脱氢酶(LDH)含量;实验结束测定心肌组织甲月赞(formazan)、丙二醛(MDA)含量及超氧化物歧化酶(SOD)活性的变化。结果:与单纯I/R组相比,AAP预处理明显提高心肌细胞的formazan含量,降低再灌注期间冠脉流出液中LDH含量,明显增强左室发展压、左心室内压最大上升速率和心率与发展压乘积的恢复,缓解冠脉流量的减少;高剂量AAP改善I/R心肌功能的作用要好于丹参预处理(4ml/(kg.d),gastricperfusion)组。中剂量AAP(100mg/(kg.d))预处理4周后明显抑制I/R心肌MDA的增加和SOD活性的减弱(P0.01),其效果要好于丹参阳性对照组。结论:在大鼠离体心脏灌流模型上,黑木耳多糖预处理具有抗心脏I/R损伤的作用,这种保护作用可能与其增加心肌SOD活性,减少脂质过氧化损伤有关。  相似文献   

14.
Mesenchymal stem cell‐based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta‐derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation‐induced murine limb ischemia model was generated with fluorescent dye (CM‐DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia‐induced injury to mouse hind limbs by enhancement of angiogenesis.  相似文献   

15.
Peroxidatic activity in heart effluent was defined as a new biochemical parameter for the experimental study of myocardial ischemia. The peroxidatic reaction was determined by dot blot analysis with 3,3'-diaminobenzidine as hydrogen donor. After ischemia, the level of peroxidatic activity in heart effluent was 2-3 times higher than before. The effects in experimental modulation of ischemia, such as nicorandil or aprikalim protection, and the reversibility of protection by glibenclamide, could accurately be noted using the level of peroxidatic activity in heart effluent as a biochemical parameter. The results were in good agreement with those obtained for other enzymes used as biochemical parameters in experimental heart ischemia-reperfusion studies.  相似文献   

16.
目的:探讨雌激素对去卵巢大鼠离体心脏缺血/再灌注损伤的保护作用。方法:成年SD雌鼠,随机分为假手术组(Sham),双侧卵巢切除组(Ovx)和双侧卵巢切除后补充17β-雌二醇组(Ovx+E2)。各组离体心脏再随机分为不同时间的缺血再灌注亚组。测量的指标包括冠脉流出液中LDH及CK含量、心室肌细胞存活率及产率、基础状态和异丙肾上腺素(ISO)刺激状态下收缩幅度。结果:30min缺血及其各复灌纽均显著增加冠脉流出液中LDH、CK的释放量。Ovx组LDH、CK漏出在30min缺血及再灌注条件下,显著高于正常灌注组,而Ovx+E2组可减轻心肌损伤,减少LDH、CK的释放。10min和20min缺血对心肌细胞存活率、产率及冠脉流出液中LDH、CK含量影响均不明显。Sham、Ovx、Ovx+E2各组心肌细胞基础收缩幅度在正常和10minⅠ+30minR灌注条件下无显著差异。Ovx显著增加其他各组心肌细胞基础收缩和ISO刺激收缩幅度,Ovx+E2可使其降至Sham水平。结论:雌激素对去卵巢大鼠心肌缺血/再灌注损伤具有保护作用。  相似文献   

17.
During reperfusion, cardiodepressive factors are released from isolated rat hearts after ischemia. The present study analyzes the mechanisms by which these substances mediate their cardiodepressive effect. After 10 min of global stop-flow ischemia, rat hearts were reperfused and coronary effluent was collected over a period of 30 s. We tested the effect of this postischemic effluent on systolic cell shortening and Ca(2+) metabolism by application of fluorescence microscopy of field-stimulated rat cardiomyocytes stained with fura-2 AM. Cells were preincubated with various inhibitors, e.g., the cyclooxygenase (COX) inhibitor indomethacin, the COX-2 inhibitors NS-398 and lumiracoxib, the COX-1 inhibitor SC-560, and the potassium (ATP) channel blocker glibenclamide. Lysates of cardiomyocytes and extracts from whole rat hearts were tested for expression of COX-2 with Western blot analysis. As a result, in contrast to nonischemic effluent (control), postischemic effluent induced a reduction of Ca(2+) transient and systolic cell shortening in the rat cardiomyocytes (P < 0.001 vs. control). After preincubation of cells with indomethacin, NS-398, and lumiracoxib, the negative inotropic effect was attenuated. SC-560 did not influence the effect of postischemic effluent. The inducibly expressed COX-2 was detected in cardiomyocytes prepared for fluorescence microscopy. The effect of postischemic effluent was eliminated with applications of glibenclamide. Furthermore, postischemic effluent significantly reduced the intracellular diastolic and systolic Ca(2+) increase (P < 0.01 vs. control). In conclusion, the cardiodepressive effect of postischemic effluent is COX-2 dependent and protective against Ca(2+) overload in the cells.  相似文献   

18.
Severe sepsis is a systemic inflammatory response to infection resulting in acute organ dysfunction. Vascular perfusion abnormalities are implicated in the pathology of organ failure, but studies of microvascular function in human sepsis are limited. We hypothesized that impaired microvascular responses to reactive hyperemia lead to impaired oxygen delivery relative to the needs of tissue and that these impairments would be associated with organ failure in sepsis. We studied 24 severe sepsis subjects 24 h after recognition of organ dysfunction; 15 healthy subjects served as controls. Near-infrared spectroscopy (NIRS) was used to measure tissue 1) microvascular hemoglobin signal strength and 2) oxygen saturation of microvascular hemoglobin (StO2). Both values were measured in thenar skeletal muscle before and after 5 min of forearm stagnant ischemia. At baseline, skeletal muscle microvascular hemoglobin was lower in septic than control subjects. Microvascular hemoglobin increased during reactive hyperemia in both groups, but less so in sepsis. StO2 at baseline and throughout ischemia was similar between the two groups; however, the rate of tissue oxygen consumption was significantly slower in septic subjects than in controls. The rate of increase in StO2 during reactive hyperemia was significantly slower in septic subjects than in controls; this impairment was accentuated in those with more organ failure. We conclude that organ dysfunction in severe sepsis is associated with dysregulation of microvascular oxygen balance. NIRS measurements of skeletal muscle microvascular perfusion and reactivity may provide important information about sepsis and serve as endpoints in future therapeutic interventions aimed at improving the microcirculation.  相似文献   

19.
It has been hypothesised that activation of matrix metalloproteinase-2 (MMP-2) contributes to reversible myocardial dysfunction (stunning) following short-term ischaemia and reperfusion. Gelatin zymography was used to measure release of both pro-MMP-2 (72 kDa) and MMP-2 (62 kDa), into the coronary effluent from isolated, perfused rabbit hearts during 90 min aerobic perfusion (control), or low-flow ischaemia (15 or 60 min at 1 mL/min), followed by 60 min reperfusion. In controls, pro-MMP-2 was detected in the coronary effluent throughout the first 30 min of aerobic perfusion, but MMP-2 was not detected. In contrast, MMP-2 was detected in the coronary effluent during reperfusion after both 15 and 60 min ischaemia. However, while left ventricular systolic function was impaired after both 15 min and 60 min ischaemia, a significant increase in the release of MMP-2 was only detected in hearts following 60 min ischaemia. The dissociation between mechanical function and MMP-2 levels suggest that MMP-2 does not contribute to myocardial stunning in this model, but may contribute to myocardial dysfunction following prolonged ischaemia.  相似文献   

20.
Acute limb ischemia is a common cause of morbidity and mortality following trauma both in civilian centers and in combat related injuries. Rapid determination of tissue viability and surgical restoration of blood flow are desirable, but not always possible. We sought to characterize the response to increasing periods of hind limb ischemia in a porcine model such that we could define a period of critical ischemia (the point after which irreversible neuromuscular injury occurs), evaluate non-invasive methods for characterizing that ischemia, and establish a model by which we could predict whether or not the animal’s locomotion would return to baselines levels post-operatively. Ischemia was induced by either application of a pneumatic tourniquet or vessel occlusion (performed by clamping the proximal iliac artery and vein at the level of the inguinal ligament). The limb was monitored for the duration of the procedure with both 3-charge coupled device (3CCD) and infrared (IR) imaging for tissue oxygenation and perfusion, respectively. The experimental arms of this model are effective at inducing histologically evident muscle injury with some evidence of expected secondary organ damage, particularly in animals with longer ischemia times. Noninvasive imaging data shows excellent correlation with post-operative functional outcomes, validating its use as a non-invasive means of viability assessment, and directly monitors post-occlusive reactive hyperemia. A classification model, based on partial-least squares discriminant analysis (PLSDA) of imaging variables only, successfully classified animals as “returned to normal locomotion” or “did not return to normal locomotion” with 87.5% sensitivity and 66.7% specificity after cross-validation. PLSDA models generated from non-imaging data were not as accurate (AUC of 0.53) compared the PLSDA model generated from only imaging data (AUC of 0.76). With some modification, this limb ischemia model could also serve as a means on which to test therapies designed to prolong the time before critical ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号