首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract: There is increasing evidence that members of the natriuretic peptide family display sympathoinhibitory activity, but it remains uncertain which receptor pathway is implicated. We performed cyclic GMP production studies with chromaffin cells treated with either atrial natriuretic factor (ANF) or C-type natriuretic peptide (CNP) and found that these cells specifically express the ANF-R1C but not the ANF-R1A receptor subtype. Evidence for the existence of ANF-R2 receptors was obtained from patch-clamp experiments where C-ANF, an ANF-R2-specific agonist, inhibited nicotinic currents in single isolated chromaffin cells. Involvement of ANF-R2 receptors in the modulation of nicotinic currents was further supported by the significant loss of this inhibitory activity after the cleavage of the disulfide-bridged structure of C-ANF. This linearized form of C-ANF also displayed a lower binding affinity for ANF-R2 receptors. Like the patch-clamp studies, secretion experiments demonstrated that both CNP and C-ANF are equally effective in reducing nicotine-evoked catecholamine secretion by cultured chromaffin cells, raising the possibility that this effect of CNP is predominantly mediated by the ANF-R2 and not the ANF-R1C receptors. Finally, this response appears to be specific to nicotinic agonists because neither histamine- nor KCI-induced secretions were affected by natriuretic peptides. In the present study, we report (1) the presence of ANF-R1C and ANF-R2 receptor subtypes in bovine chromaffin cells, (2) the inhibition by natriuretic peptides of nicotinic whole-cell currents as well as nicotine-induced catecholamine secretion, (3) the possible mediation of these effects by the ANF-R2 class of receptors, and (4) the specificity of this inhibition to nicotinic agonists. Because bovine chromaffin cells release ANF, BNP, and CNP together with catecholamines, all three peptides might exert negative feedback regulation of catecholamine secretion in an autocrine manner by interacting with the nondiscriminating ANF-R2 receptor subtype.  相似文献   

2.
We describe the isolation of a 3,276 base pair cDNA for the bovine natriuretic peptide receptor-B (NPR-B). Expression of this clone in Cos-P cells demonstrates that it encodes an agonist-dependent guanylyl cyclase. Porcine CNP stimulates the activity of this receptor up to 200-fold with an ED50 of 12±2 nM, whereas brain natriuretic peptide C-type natriuretic peptide (CNP) and atrial natriuretic factor (ANF) are less efficacious. In addition, ligand binding studies indicate that this receptor exhibits the pharmacology appropriate for the bovine NPR-B. CNP binds to Cos-P cell membranes expressing this clone with a Kd of 13±1 pM, and natriuretic peptides compete for [125I]-CNP binding with a rank order of pCNP>pBNP>rANF. Thus, the expressed receptor-guanylyl cyclase exhibits the expected pharmacological profile for ligand binding and cyclase activation of the bovine NPR-B receptor.Abbreviations BSA bovine serum albumin - dNTP deoxynucleotide triphosphate - SDS sodium dodecyl sulfate - DEAE-dextran diethylaminoethyl-dextran - EDTA ethylenediamine tetraacetic acid - Tris Tris(hydroxymethyl)aminomethane - DMSO dimethyl sulfoxide - RP-HPLC reverse phase-high performance liquid chromatography - AMV avian myeloblastosis virus - Arg arginine - Lys lysine  相似文献   

3.
The 130 kDa atrial natriuretic factor receptor (ANF-R1) purified from bovine adrenal zona glomerulosa is phosphorylated in vitro by serine/threonine protein kinases such as cAMP-, cGMP-dependent and protein kinase C. This phosphorylation is independent of the presence of ANF (99–126) and there is no detectable intrinsic kinase activity associated with the ANF-R1 receptor or with its activated form. In bovine adrenal zona glomerulosa cells, TPA (phorbol ester) induces a marked inhibition of the ANF-stimulated cGMP accumulation as well as of the membrane ANF-sensitive guanylate cyclase catalytic activity without any change in the binding capacity or affinity for 125I-ANF. However, we have demonstrated a significant 32P incorporation in the ANF-R1 receptor of the TPA-treated cells. The effect of TPA on the zona glomerulosa ANF-R1 receptors was abolished by calphostin C, a specific protein kinase C inhibitor. Altered ANF actions due to blunted response of guanylate cyclase to ANF could be a consequence of the ANF receptor phosphorylation by excessive activity of protein kinase C and might be involved in the pathogenesis of hypertension.Abbreviations ANF Atrial Natriuretic Factor - ANF-R1 Atrial Natriuretic Factor Receptor, subtype 1 - ATP Adenosine Triphosphate - CaCl2 Calcium Chloride - cAMP Adenosine cyclic 3,5-Monophosphate acid - cGMP Guanosine cyclic 35-Monophosphate acid - EDC 1-Ethyl-3-[3-Dimethylaminopropyl] Carbodiimide - EDTA Ethylenediaminetetraacetic Acid - GTP Guanosine Triphosphate - IBMX 3-isobutyl-1-methylxanthine - kDa Kilodaltons - MgCl2 Magnesium Chloride - MgAC Magnesium Acetate - NaCl Sodium Chloride - PAGE Polyacrylamide Gel Electrophoresis - PKA cAMP-dependent protein kinase - PKG cGMP-dependent Protein Kinase - PKC Calcium/Phospholipid-dependent Protein Kinase - RIA Radioimmunoassay - SDS Sodium Dodecyl Sulfate - SHR Spontaneously Hypertensive Rat - Tris HCl Tris (Hydroxymethyl) aminomethane Hydrochloride - TPA 12-O-Tetradecanoyl-Phorbol-13-Acetate  相似文献   

4.
The effect of natriuretic peptides on forskolin-evoked adenylyl cyclase activity was investigated in dispersed gill cells from the Australian short-finned eel (Anguilla australis). Molecular cloning techniques were employed to identify the putative G-protein-activating motif within the intracellular domain of the eel natriuretic peptide C receptor. Eel ANP, eel CNP and the NPR-C-specific C-ANF inhibited the forskolin-stimulated production of cyclic AMP. This effect was abolished by pretreatment of cells with pertussis toxin. Eel VNP was without effect on adenylyl cyclase activity. PCR and molecular cloning indicated that the intracellular domain of A. australis NPR-C has the same amino acid sequence as Anguilla japonica. Alignment of these sequences with Rattus norvegicus NPR-C indicated conservation of the putative G-protein-activating motif BB...BBXXB (B=basic, X=nonbasic residues). These data suggest that branchially-expressed NPR-C may play a physiological role additional to that of ligand clearance.Abbreviations ANP atrial natriuretic peptide - CNP C-type natriuretic peptide - cAMP cyclic adenosine monophosphate - cGMP cyclic guanosine monophosphate - eANP-NH2 amidated form of eel ANP - GC guanylyl cyclase - Gi inhibitory G-protein - IBMX isobutylmethylxanthine - NP natriuretic peptide - NPR natriuretic peptide receptor - PCR polymerase chain reaction - PTX pertussis toxin - VNP ventricular natriuretic peptideCommunicated by I.D. Hume  相似文献   

5.
Summary The ultracytochemical localization of particulate guanylate cyclase has been studied in lamb olfactory mucosa after activation with rat atrial natriuretic factor (rANF), porcine brain natriuretic peptide (pBNP), porcine C-type natriuretic peptide (pCNP) or rat brain natriuretic peptide (rBNP). Particulate guanylate cyclase is the receptor for these peptides and recently two subtypes of the cyclase have been identified. These isoforms are stimulated differently by ANF, BNP and CNP. Under our experimental conditions, rANF, pCNP and pBNP were strong activators of particulate guanylate cyclase in lamb olfactory mucosa, as demonstrated by the presence of reaction product. Samples incubated in basal conditions without rANF, pCNP or pBNP, or samples incubated in presence of rBNP did not reveal any cyclase activity. The rANF-stimulated cyclase activity was localized in the apical portion of olfactory epithelium. pCNP-stimulated guanylate cyclase was detected to the lamina propria in association with secretory cells of Bowman's glands and with cells in close relation with Bowman's glands (elongated cells and myoepithelial cells). The cyclase activity stimulated by pBNP was limited to cells of Bowman's glands. The present data indicate that ANF and CNP are recognized by different receptors and that BNP and CNP bind to the same receptor.  相似文献   

6.
The type C natriuretic peptide (CNP)-activated guanylate cyclase (CNP-RGC) is a single-chain transmembrane-spanning protein, containing both CNP binding and catalytic cyclase activities. Upon binding CNP to the extracellular receptor domain, the cytosolic catalytic domain of CNP-RGC is activated, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening signal transduction step which is regulated by ATP binding to the cyclase. This bridges the events of ligand binding and cyclase activation. A defined sequence motif (Gly499-Xa-Xa-Xa-Gly503), termed ATP regulatory module (ARM), is critical for this step. The present study shows that ATP not only amplifies the signal transduction step, it also concomitantly reduces the ligand binding activity of CNP-RGC. Reduction in the ligand binding activity is a consequence of the transformation of the high affinity receptor-form to the low affinity receptor-form. A single ARM residue Gly499 is critical in the mediation of both ATP effects, signal transduction and ligand binding activity of the receptor. Thus, this residue represents an ATP bimodal switch to turn the CNP signal on and off.  相似文献   

7.
Natriuretic peptide receptor-C signaling and regulation   总被引:10,自引:0,他引:10  
Anand-Srivastava MB 《Peptides》2005,26(6):1044-1059
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.  相似文献   

8.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.  相似文献   

9.
The endothelial cell has a unique intrinsic feature: it produces a most potent vasopressor peptide hormone, endothelin (ET-1), yet it also contains a signaling system of an equally potent hypotensive hormone, atrial natriuretic factor (ANF). This raises two related curious questions: does the endothelial cell also contain an ET-1 signaling system? If yes, how do the two systems interact with each other? The present investigation was undertaken to determine such a possibility. Bovine pulmonary artery endothelial (BPAE) cells were chosen as a model system. Identity of the ANF receptor guanylate cyclase was probed with a specific polyclonal antibody to the 180 kDa membrane guanylate cyclase (mGC) ANF receptor. A Western-blot analysis of GTP-affinity-purified endothelial cell membrane proteins recognized a 180 kDa band; the same antibody inhibited the ANF-stimulated guanylate cyclase activity; the ANF-dependent rise of cyclic GMP in the intact cells was dose-dependent. By affinity cross-linking technique, a predominant 55 kDa membrane protein band was specifically labeled with [125I]ET-1. ET-1 treatment of the cells showed a migration of the protein kinase C (PKC) activity from cytosol to the plasma membrane; ET-1 inhibited the ANF-dependent production of cyclic GMP in a dose-dependent fashion with an EC50 of 100 nM. This inhibitory effect was duplicated by phorbol 12-myristate 13-acetate (PMA), a known PKC-activator. The EC50 of PMA was 5 nM. A PKC inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), blocked the PMA-dependent attenuation of ANF-dependent cyclic GMP formation. These results demonstrate that the 180 kDa mGC-coupled ANF and ET-1 signaling systems coexist in endothelial cells and that the ET-1 signal negates the ANF-dependent guanylate cyclase activity and cyclic GMP formation. Furthermore, these results support the paracrine and/or autocrine role of ET-1.  相似文献   

10.
11.
In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 min, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2h, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte.  相似文献   

12.
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7-14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682-91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3-30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.  相似文献   

13.
The C type natriuretic peptide (CNP) is a peptide hormone stimulating vasorelaxation and inhibiting cell proliferation. CNP activates the type B natriuretic peptide receptor (NPR-B), known as the guanylate cyclase B membrane enzyme, which results in the cGMP release. To study functional properties of NPR-B, its gene fragments were expressed in methylotrophic yeastsPichia pastoris. Conditions were found providing for secretion of functionally active recombinant proteins NPR-Bs and NPR-Bl into the cultural medium in a yield of 25 mg/l culture. Their specific activity was 0.97 and 0.93 μmol cGMP min−1 mg−1 protein, respectively. It was shown that NPR-B belongs to the family of Ser/Thr protein kinases and can be autophosphorylated at the serine residues.  相似文献   

14.
Atrial natriuretic peptide (ANP) and the closely-related peptides BNP and CNP are highly conserved cardiovascular hormones. They bind to single transmembrane-spanning receptors, triggering receptor-intrinsic guanylyl cyclase activity. The "truncated" type-C natriuretic peptide receptor (NPR-C) has long been called a clearance receptor because it lacks the intracellular guanylyl cyclase domain, though data suggest it might negatively couple to adenylyl cyclase via G(i). Here we report the molecular cloning and characterization of the Xenopus laevis type-C natriuretic peptide receptor (XNPR-C). Analysis confirms the presence of a short intracellular C-terminus, as well as a high similarity to fish and mammalian NPR-C. Injection of XNPR-C mRNA into Xenopus oocytes resulted in expression of high affinity [(125)I]ANP binding sites that were competitively and completely displaced by natriuretic analogs and the unrelated neuropeptide vasoactive intestinal peptide (VIP). Measurement of cAMP levels in mRNA-injected oocytes revealed that XNPR-C is negatively coupled to adenylyl cyclase in a pertussis toxin-sensitive manner. When XNPR-C was co-expressed with PAC(1) receptors for pituitary adenylyl cyclase-activating polypeptide (PACAP), VIP and natriuretic peptides counteracted the cAMP induction by PACAP. These results suggest that VIP and natriuretic peptides can potentially modulate the action of PACAP in cells where these receptors are co-expressed.  相似文献   

15.
The effect of simulated ischemia [hypoxia, no glucose, extracellular pH (pH(o)) 6.4] on cGMP synthesis induced by stimulation of soluble (sGC) or particulate guanylyl cyclase (pGC) was investigated in adult rat cardiomyocytes. Intracellular cGMP content was measured after stimulation of sGC by S-nitroso-N-penicillamine (SNAP) or stimulation of pGC by natriuretic peptides [urodilatin (Uro), atrial natriuretic peptide (ANP), or C-type natriuretic peptide (CNP)] for 1 min in the presence of phosphodiesterase inhibitors. After 2 h of simulated ischemia, a decrease of >50% was observed in pGC-dependent cGMP synthesis, but no significant change was observed in sGC-dependent cGMP synthesis. The reduction in cGMP synthesis caused by simulated ischemia was mimicked by extracellular acidosis (pH(o) 6.4), which decreased pGC-mediated cGMP synthesis without altering sGC-mediated cGMP synthesis. An extreme sensitivity of pGC activity to low pH was also observed in membrane cell fractions. Hypoxia without acidosis (pH(o) 7.4) profoundly depressed cellular ATP content but did not change the response to SNAP, Uro, or ANP (selective agonists of pGC type A receptor). Only cGMP synthesis in response to CNP (a selective agonist of pGC type B receptor) was significantly reduced by ATP depletion. These data support the relevance of intracellular pH as a modulator of cGMP and suggest that, in ischemic cardiomyocytes, synthesis of cGMP would be mainly nitric oxide dependent.  相似文献   

16.
C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that 30-fold to greater than 100-fold more CNP(lbab) was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNP(lbab) to activate NPR-B was explained, at least in part, by decreased binding since 10-fold more CNP(lbab) than wild-type CNP was required to compete with [(125)I][Tyr(0)]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab(-/-) mice.  相似文献   

17.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

18.
C-type natriuretic peptide (CNP), which was recently found to be a selective ligand for one of the two known natriuretic peptide receptor guanylyl cyclases (NPR-B), potently stimulates cGMP production in cultured rat vascular smooth muscle cells (VSMC) and exerts potent antiproliferative effects on the cells. To investigate the structural requirements of CNP for stimulation of cGMP accumulation via NPR-B, we prepared CNP analogs and tested them on cultured rat VSMC. Our results indicate that only the ring portion of CNP with a disulfide bond (CNP(6-22)) participates in stimulation of cGMP accumulation, especially the sequence Leu9-Lys10-Leu11 in the ring portion executes essential roles for both elevation of cGMP and selectivity of the ligand for NPR-B. We also found a good correlation between the activities of the CNP analogs for stimulation of cGMP accumulation and inhibition of DNA synthesis.  相似文献   

19.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro.Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 M of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.Abbreviations STa the heat-stable enterotoxin of E. coli, which has also been called ST-I and STp. The 18 amino acid variant was used throughout - PBS phosphate-buffered saline - PDB 4--12, 13-phorbol dibutyrate - ANP atrial natriuretic peptide - STaR/GC STa receptor/guanylyl cyclase, also called GC-C - PKC protein kinase C  相似文献   

20.
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (DeltaGC). We demonstrate that this receptor (NPR-A-DeltaGC) can be directly labeled by 8-azido-3'-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor DeltaKC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-DeltaGC is reduced by 50% in the presence of 550 microm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号