首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Elongational flow techniques have been used to investigate the birefringent response of monodisperse type IV collagen in dilute solution and the results compared with type I. collagen. A four-roll mill apparatus was used to characterize the solutions at low strain rates, $\dot{\varepsilon}$ ? 300 s?1. The birefringence is nonlocalized and rises gradually to a plateau value, in accordance with rigid-rod behavior. The gradients of the tangent to the curves at zero strain rate are estimated for types IV and I collagen. The concentrations of the solutions used were in the dilute to semidilute regimes. Using a value of 300 nm for the length of type I collagen, values of 364–408 nm were calculated for the length of the type IV collagen molecule, depending on the concentration regime chosen, which is consistent with biochemical predictions based on a rigid molecule. The results imply that the behavior of type IV collagen molecules in solution is similar to type I collagen, despite the presence of several sequence interruptions in the type IV helix. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Mechanical properties of trabecular bone. Dependency on strain rate.   总被引:8,自引:1,他引:7  
The effect of strain rate (epsilon) and apparent density (rho) on stiffness (E), strength (sigma u), and ultimate strain (epsilon u) was studied in 60 human trabecular bone specimens from the proximal tibia. Testing was performed by uniaxial compression to 5% specimen strain. Six different strain rates were used: 0.0001, 0.001, 0.01, 0.1, 1, and 10 s-1. Apparent density ranged between 0.23 and 0.59 g cm-3. Linear and non-linear regression analyses using strength, stiffness and ultimate strain as dependent variables (Y) and strain rate and apparent density as independent variables were performed using the following models: Y = a rho b epsilon c, Y = rho b(a + c epsilon; Y = (a + b rho)epsilon c, Y = a rho 2 epsilon c, E = a rho 3 epsilon c. The variations of strength and stiffness were explained equally well by the linear and the power function relationship to strain rate. The exponent was 0.07 in the power function relationship between strength and strain rate and 0.05 between stiffness and strain rate. The variation of ultimate strain was explained best using a power function relationship to strain rate (exponent = 0.03). The variation of strength and stiffness was explained equally well by the linear, power function and quadratic relationship to apparent density. The cubic relationship between stiffness and apparent density showed a less good fit. Ultimate strain varied independently of apparent density.  相似文献   

3.
The inhibitory subunit (epsilon) of the F1 adenosine triphosphatase (ATPase) was purified to homogeneity from the ML 308-225 and K12 (lambda) strains of Escherichia coli. No tryptophan or cysteine was detected in the subunit from either strain. The highly active epsilon from both strains was found to be a globular protein with a Stokes' radius of 18--19 A. Circular dichroism spectra suggested an alpha-helix content of approximately 40%. The molecular weight of epsilon was approximately 15000--16000 by sedimentation equilibrium centrifugation in the presence and absence of guanidinium hydrochloride, molecular sieve chromatography, and gel electrophoresis in the presence of sodium dodecyl sulfate and 8 M urea. The s20,w of epsilon was approximately 1.6 s-1. Inhibition of the purified F1 ATPase by epsilon displayed noncompetitive kinetics with a Ki of approximately 10 nM. The inhibition of the ATPase was rapidly reversed by diluting the enzyme--epsilon mixture. [125I]epsilon which was incorporated into ECF1 was readily displaced by unlabeled epsilon. epsilon had no significant effect on the ATPase activity of "native" or reconstituted everted membrane vesicles under a variety of assay conditions. Combining the epsilon-inhibited F1 ATPase with its hydrophobic portion in everted membrane vesicles reconstituted the reversible proton-translocating ATPase and restored nearly full ATPase activity. These results suggest that epsilon inhibits the enzyme only when the F1 ATPase becomes detached from its hydrophobic subunits.  相似文献   

4.
Conformational kinetics of triligated hemoglobin.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used the method of modulated excitation (Ferrone, F.A., and J.J. Hopfield, 1976, Proc. Natl. Acad. Sci. USA. 73:4497-4501), with an improved apparatus and a revised analytical procedure, to measure the rate of conformational change between the oxy (R) and deoxy (T) conformations of triligated carboxy-hemoglobin A at pH 6.5 and 7.0. We have found the rates to be kRT = 1.2 X 10(3) s-1 and kTR = 3.5 X 10(3) s-1 for pH 6.5, while for pH 7.0, kRT = 1.0 X 10(3) s-1, and kTR = 3.0 X 10(3) s-1. The value for L3, the equilibrium constant between conformations, was virtually unchanged between pH 6.5 and 7.0. While the rates measured here differ from those obtained in the original use of this method, these new rates are fully consistent with the original data when analyzed by the revised procedures presented here. When taken with other kinetic and equilibrium data, our measurements suggest that the transition state between structures is dominated by the behavior of the T quaternary structure. Finally, a spectral feature near the HbCO Soret peak has been observed that we ascribe to an allosteric perturbation of the spectra of the liganded hemes.  相似文献   

5.
Interaction of DNA-binding protein HU from Bacillus stearothermophilis (HUBst) with coliphage T2 DNA was investigated by observing an elongational flow-induced birefringence, Deltan, of a T2-phage DNA aqueous solution at various HU concentrations. Localized flow birefringence was observed in the pure elongational flow region, and the strain rate dependence of Deltan had a critical strain rate epsilon;(c) for the appearance of flow birefringence at all of the HU concentrations examined, indicating that a coil-stretch transition occurred at epsilon;(c) in each DNA-HU system. For strain rates larger than epsilon;(c), Deltan increased rapidly and then gradually, approaching a plateau value. The value of epsilon;(c) increased with an increase in HU concentration. Analysis based on the relationship between epsilon; (c) and the Rouse-Zimm relaxation time revealed that the increase in epsilon;(c)with increase in HU can be explained by the decrease in the size of the DNA-HU complex. The plateau birefringence value, Deltan(p), decreased at small HU concentrations but did not change at larger HU concentrations. Considering that Deltan(p) is related to the orientational order parameter of segments, it was concluded that there were at least two stages in the process of compaction of DNA induced by HU.  相似文献   

6.
J. A. Odell  M. A. Taylor 《Biopolymers》1994,34(11):1483-1493
We present an analysis of the response of native DNA solutions to well-defined elongational flow fields. At low strain rates the DNA duplex behaves as an expanded coil. It shows a noncritical coil-stretch transition, suggesting relatively little hysteresis of the relaxation time. On the other hand, the relaxation time is consistent with a nonfree draining coil. At higher strain rates we observe midpoint scission. This has been modeled very successfully as a thermomechanically activated process. Scission occurs at hydrolyzable weak linkages along the constituent strands. Complete scission of the DNA helix is, however, considerably less prevalent than would be expected given the low stability of the constituent strands. We speculate upon the molecular origin and biological consequences of this enhanced stability. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
To study the effect of strain rate on the acoustic emission amplitude signature of bone, bovine cortical bone was milled into standard tensile specimens which were tested at two different strain rates while being monitored with acoustic emission equipment. It was demonstrated that the amplitude distribution of the acoustic events in bone is dependent on strain rate. Greater numbers of events occurred with the slower strain rate (0.0001 s-1), but these events were of lower amplitude than those emitted during the more rapid strain rate (0.01 s-1). The plot of the cumulative event amplitude distribution followed the power-law model, and the slope of this output, the b-value, represented a signature of the amplitude distribution. The mechanical test results were consistent with the behavior of a viscoelastic multi-phase composite material.  相似文献   

8.
成骨细胞对梯度拉伸应变的响应   总被引:2,自引:0,他引:2  
采用四点弯曲加载装置对原代的大鼠颅盖骨细胞施加周期性的拉伸刺激,并设计了应变呈梯度增加的加载方式,使成骨细胞受到的拉伸应变为500-1500με,每隔2h增加500με,以考察成骨细胞对变化的力学环境的响应。结果表明,在500με下拉伸2-6h促进了成骨细胞的增殖、碱性磷酸酶活力增强和胞外钙基质沉积。对细胞施加应变呈梯度增加的拉伸刺激,则发现当应变从有利于细胞的生长分化水平(500με)变化为不利于细胞生长分化的水平(1000με,1500με)后,细胞的增殖指数、碱性磷酸酶活力和胞外钙基质分泌量都迅速降低,以适应新的力学环境。说明成骨细胞能够分辨不同的应变水平,并相应地调节自身的生理功能,从而表现出对变化的力学环境的适应。  相似文献   

9.
W F Reed  C E Reed  L D Byers 《Biopolymers》1990,30(11-12):1073-1082
A recently developed theory of the light scattering by random coils undergoing random scission is applied to the digestion of hyaluronate by hyaluronidase. The time dependence of the scattered light from solutions undergoing digestion was monitored. Working at a high angle with high molecular weight hyaluronate allowed the use of a powerful approximation for determining initial velocities and the Henri-Michaelis-menten coefficients, without explicit knowledge of the hyaluronate molecular weight, radius of gyration, second virial coefficient, or polydispersity. Effects due to a molecular weight dependent second virial coefficient and to non-Gaussian behavior are briefly considered. Assays were performed over nearly two orders of magnitude in substrate concentration. The initial velocities are compared with those obtained by a standard reducing sugar assay, which was performed on identical samples. The main advantages of the light scattering assay procedure over the more traditional assays are that many relatively high-precision data points can be quickly and automatically collected with simple apparatus, and that the technique is most sensitive for the initial period of digestion, where the other assays are least sensitive. The shapes of the scattering curves also provide evidence that hyaluronate in these solutions is not a stable double strand and that the hyaluronidase cleaves bond randomly. The curves also indicate that enzyme deactivation occurs, which accounts for the lower velocities yielded by the slower reductimetric assay, which is measured over longer initial periods.  相似文献   

10.
There has been little study on the effect of composition or molecular weight on the biodegradation rate of photo-cross-linked biodegradable aliphatic polyesters though such information is important for tissue engineering scaffolds. We have synthesized a new series of photopolymerizable linear poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylates with different molecular weights (Mn = 1800, 4800, and 9300 Da) and compositions (20%, 40%, and 60% epsilon-CL) and studied their biodegradation rates. The resultant oligomers were amorphous and appeared as viscous liquids at room temperature. Liquid-to-solid polymerization was carried out by UV irradiation in the presence of a photoinitiator. The photocuring yield was high (greater than 95%), and the photo-cross-linked polymers were amorphous and rubbery. Mechanical measurements showed that the polymers can be stretchable or rigid; the high molecular weight/low epsilon-CL network has a strain of 176% and a modulus of 1.66 MPa while the low molecular weight/high epsilon-CL network has a strain of 21% and a modulus of 12.3 MPa. In a 10 week in vitro biodegradation study, the polymers exhibited a two-stage degradation behavior. In the first stage, the polymer weight and strain remained almost constant, but a linear decrease in the Young's modulus (E) and ultimate stress (sigma) were observed. Lower oligomer molecular weight or epsilon-CL content correlated with a faster decrease in Young's modulus. In the second stage, which began when the Young's modulus dropped below 1 MPa, there was rapid weight loss and strain increase. The lower the epsilon-CL content, the earlier the second stage happened. Low molecular weight and high epsilon-CL content correlated with a longer modulus half-life (time for the modulus to degrade to 50% of its initial value). The degradation results suggest principles that may be helpful in predicting the biodegradation behavior of similar polymeric cross-linked networks. Films formed from these new polymers have excellent biocompatibility with smooth muscle cells.  相似文献   

11.
By means of ESR-method the rotary mobility of a tanol spin probe is studied in the whole blood of white rats at the temperatures 5.20 and 37 degrees C. It is shown that at all the temperatures the spin probe is localized in the blood plasma and has a value HFS a = (17.1 +/- 0.1) G. By means of linear anamorphism method it is shown on the example of the spectrum central line that the contour is lorenz, i. e. the superposition of the spectra of different sample regions is absent. The spin probe rotation frequency v is a stable blood parameter, the same for 11 rats investigated and dependent only on the blood temperature. For T = 5.20 and 37 degrees C the values have been received v = (86 +/- 2) x 10(8) s-1, (98 +/- 2) x 10(8) s-1 and (107 +/- 3) x 10(8) s-1, subsequently, which compared to v value in water-glycerin system (1:1) (WGS) allow one to calculate the blood microviscosity values (7.2 +/- 0.4), (6.3 +/- 0.4) and (5.8 +/- 0.4) mPds, subsequently. For the mentioned temperatures the non-sphericity parameter epsilon of the spin probe rotation has the values 0.19 +/- 0.03, 0.22 +/- 0.04 and 0.21 +/- 0.05, subsequently that is close to this parameter value for WCS (epsilon = 0.21 +/- 0.02; v = (6 divided by 20) x 10(9) s-1).  相似文献   

12.
A major worldwide health problem is hip fracture due to sideways fall among the elderly population. The effects of sideways fall on the hip are required to be investigated thoroughly. The objectives of this study are to evaluate the responses to trochanteric soft tissue thickness (T) variations and hip impact velocity (V) variations during sideways fall based on a previously developed CT scan derived 3D non-linear and non-homogeneous finite element model of pelvis-femur-soft tissue complex with simplified biomechanical representation of the whole body. This study is also aimed at quantifying the effects [peak impact force (F(max)), time to F(max), acceleration and peak principal compressive strain (epsilon(max))] of these variations (T,V) on hip fracture. It was found that under constant impact energy, for 81% decrease in T (26-5mm), F(max) and epsilon(max) increased by 38% and 97%, respectively. Hence, decrease in T (as in slimmer persons) strongly correlated to risk for hip fracture (phi) and strain ratio (SR) by 0.972 and 0.988, respectively. Also under same T and body weight, for 75% decrease in V (4.79-1.2m/s), F(max) and epsilon(max) decreased by 70% and 86%, respectively. Hence, increase in V (as in taller persons) strongly correlated to phi and SR by 0.995 and 0.984, respectively. For both variations in T and V, inter-trochanteric fracture situations were well demonstrated by phi as well as by SR and strain contours, similar to clinically observed fractures. These quantifications would be helpful for effective design of person-specific hip protective devices.  相似文献   

13.
Exchange rates were calculated as a function of pH from line widths of methylamine resonances in 13C-NMR spectra of N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine (TML) and N epsilon,N epsilon,N alpha,N alpha-tetramethyllysine methyl ester (TMLME). The pH dependence of the dimethyl alpha-amine exchange rate could be adequately described by assuming base-catalyzed chemical exchange between two diastereotopic methyl populations related by nitrogen inversion. Deprotonation of the alpha-amine was assumed to occur by proton transfer to (1) OH-, (2) water, (3) a deprotonated amine or (4) RCO2-. Microscopic rate constants characterizing each of these transfer processes (k1, k2, k3 and k4, respectively) were determined by fitting the rates calculated from line width analysis to a steady-state kinetic model. Using this procedure it was determined that for both TML and TMLME k2 approximately equal to 1-10 M-1 s-1, k3 approximately equal to 10(6) M-1 s-1 and ki, the rate constant for nitrogen inversion was about 10(8)-10(9) s-1. Upper limits of 10(12) and 10(3) M-1 s-1 could be determined for k1 and k4, respectively. A similar kinetic analysis was used to explain pH-dependent line-broadening effects observed for the N-terminal dimethylalanyl resonance in 13C-NMR spectra of concanavalin A, reductively methylated using 90% [13C]formaldehyde. From exchange data below pH 4 it could be determined that amine inversion was limited by the proton transfer rate to the solvent, with a rate constant estimated at 20 M-1 s-1. Above pH 4, exchange was limited by proton transfer to other titrating groups in the protein structure. Based upon their proximity, the carboxylate side chains of Asp-2 and Asp-218 appear to be likely candidates. The apparent first-order microscopic rate constant characterizing proton transfer to these groups was estimated to be about 1 X 10(4) s-1. Rate constants characterizing nitrogen inversion (ki), proton transfer to OH- (k1) and proton transfer to the solvent (k2) were estimated to be of the same order of magnitude as those determined for the model compounds. On the basis of our results, it is proposed that chemical exchange processes associated with base-catalyzed nitrogen inversion may contribute to 15N or 13C spin-lattice relaxation times in reductively methylated peptides or proteins.  相似文献   

14.
An in vitro system that permits application of a uniform biomechanical stimulus to a population of cells with great precision has been developed. The device is designed to subject living cells to reproducible and quantifiable biaxial strains from 0 to 10% at rates from quasi-static to 1 s-1 and frequencies from 0 to 5 Hz. Equations for determining the strain in the substrate upon which the cells are grown, based on easily measured parameters, are derived and validated experimentally. The mechanical properties of the substrate are determined, and it is demonstrated that cells can easily be cultured in the apparatus. By use of the system, cloned bovine pulmonary artery endothelial cell clones are subjected to 5% biaxial strains applied at a peak strain rate of 0.5 s-1 and a frequency of 1 Hz for 7 h with cell viability greater than 84% and cell detachment less than 8%. We demonstrate that cells must be attached to the substrate for them to be stretched and that cell strain and substrate strain are not equal. With the use of fluorescently labeled beads as cell surface markers to measure the actual strain produced in the cells as a result of the deformation of the substrate, cell elongation was found to be approximately 60% of the strain in the substrate. This constant appeared to be affected by both in vitro cell age and morphology.  相似文献   

15.
We presented indirect evidence that in an excision-deficient rad3 mutant of yeast exposed to diepoxybutane (DEB), DNA synthesis continued past the damaged sites. This bypass replication was confined to the first post-treatment round of replication and was followed by inhibition of DNA synthesis. Analyses by alkaline sucrose gradient sedimentation and by alkaline elution from filters revealed that in mutant cells the first post-treatment round of replication proceeded at a similar rate to that in untreated cells and was not accompanied by strand scission of template DNA. The post-treatment synthesis was presumably of an error-prone type, as the frequency of reversion to ade2-1 prototrophy was increased. In contrast, in the isogenic wild-type strain, the post-treatment incorporation of radioactivity into DNA was slightly reduced and newly replicated DNA fragments were of lower molecular weight than in control cells. There was also some strain scission in template DNA, presumably resulting from excision-repair.  相似文献   

16.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

17.
Connectin is an elastic protein of vertebrate striated muscle, and consists of doublet components, alpha and beta (also called titins 1 and 2). In the present study, beta-connectin isolated in the native state was investigated in order to characterize its molecular size and shape. The molecular weight was approximately 2.1 X 10(6) (SDS gel electrophoresis) or 2.7 X 10(6) (sedimentation equilibrium). The sedimentation coefficient (SO20, w) was 17S in 0.1 M phosphate buffer, pH 7.0. The intrinsic viscosity measured in an Ostwald-type viscometer was 1.8 dl/g. However, the viscosity was greatly dependent on the velocity gradient, and at a very low velocity gradient of 0.0007 s-1, a solution of connectin (0.3 mg/ml) showed a viscosity value of 17,000 cp. Flow birefringence measurements suggested a length distribution ranging from 300 to 450 nm. Electron microscopic observations revealed that connectin is a long flexible filament and the peaks of frequency of length distribution were at 150, 300, 450, and 600 nm. It was tentatively assumed that the connectin molecule is 300-400 nm long and 34-38 nm wide. It is likely that beta-connectin is derived from alpha-connectin, which has an apparent molecular weight of 2.8 X 10(6).  相似文献   

18.
AIMS: The objective of this study was to generate strain-specific genomic patterns of a bank of 67 commercial and reference probiotic strains, with a focus on probiotic lactobacilli. METHODS AND RESULTS: Pulsed-field gel electrophoresis (PFGE) was used as the primary method for strain differentiation. This method was compared with carbohydrate fermentation analysis. To supplement visual comparison, PFGE patterns were analysed quantitatively by cluster analysis using unweighted pair group method with arithmetic averages. SmaI, NotI and XbaI were found to effectively generate clear and easy-to-interpret PFGE patterns of a range of probiotic strains. Some probiotic strains from different sources shared highly similar PFGE patterns. CONCLUSIONS: Results document the value of genotypic strain identification methods, combined with phenotypic methods, for determining probiotic strain identity and relatedness. No correlation was found between relatedness determined by carbohydrate fermentation profiles alone compared with PFGE analysis alone. Some commercial strains are probably derived from similar sources. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach is valuable to the probiotic industry to develop commercial strain identification patterns, to provide quality control of strain manufacturing production runs, to track use of protected strains and to determine the relatedness among different research and commercial probiotic strains.  相似文献   

19.
【目的】稻曲病(Rice false smut)是由稻曲病菌[Villosiclava virens (Cooke) Tak.]引起的严重危害水稻的真菌病害。构建稻曲病菌UV-2的大片段DNA细菌人工染色体(Bacterial artificial chromosome, BAC)文库, 为致病相关基因的鉴定及在图位克隆、比较基因组学等方面的研究奠定基础。【方法】以幼嫩菌丝为材料制备大分子基因组DNA包埋块, 用Hind III部分酶解后经脉冲凝胶电泳筛选, 回收大片段DNA并与pIndigoBAC536-S 载体连接, 连接产物转化大肠杆菌菌株DH10B T1 Phage-Resistant 细胞后进行蓝白斑筛选, 白色菌落捡入384孔板置于?80 °C低温保存。【结果】成功构建UV-2菌株的高质量、高覆盖度的BAC文库, 该文库共含10 368个克隆, 平均插入片段为124.4 kb, 空载率小于1%, 约覆盖该菌基因组的36.8倍。【结论】克服了真菌大分子基因组DNA制备难控制的技术难题, 建立了首个稻曲病菌的BAC文库。该文库已作为一种公共基因组资源向研究者开放(http://GResource.hzau.edu.cn)。  相似文献   

20.
The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号