首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of pH (5.0, 6.0, and 7.0), temperature (19, 28, and 37 degrees C), and atmosphere (aerobic versus anaerobic) with NaCl (0, 1, 2, 3, 4, and 5%) on the growth of Salmonella typhimurium ATCC 14028 in defined glucose-mineral salts culture medium were evaluated. Response surface methodology was used to develop equations describing the response of S. typhimurium to environmental changes. The response to an increasing concentration of NaCl at any temperature tested was nonlinear. The maximum growth was predicted to occur at an NaCl concentration of 0.5%, a temperature of 19 degrees C, and an initial pH of 7.0 under aerobic growth conditions. The relative amounts of aerobic growth at 19 degrees C, pH 7.0, and NaCl concentrations of 0, 0.5, 1, 2, 3, 4, and 5% were predicted to be 99.2, 100.0, 98.8, 90.2, 73.5, 48.6, and 15.6%, respectively. Anaerobic growth conditions repressed the amount of growth relative to that under aerobic conditions, and the effects of NaCl and pH were additive at low salt concentrations; however, at higher salt levels anaerobiosis provided protection against the effects of NaCl.  相似文献   

2.
The effect of sorbate on L-serine and L-histidine uptake in Salmonella typhimurium was studied at various pH levels, temperatures, and amino acid and sorbate concentrations. Low pH had an apparent synergistic effect on amino acid uptake inhibition caused by sorbate. The relationship between sorbate concentration and the amount of amino acid uptake inhibition was not linear. Compared with L-histidine, L-serine uptake was more sensitive to changes in pH, temperature, and sorbate concentration. Various degrees of amino acid uptake inhibition by sorbate may be related to differences between amino acid transport systems. The results of this study suggest that sorbate acts as a noncompetitive inhibitor of amino acid uptake in S. typhimurium.  相似文献   

3.
The effect of sorbate on L-serine and L-histidine uptake in Salmonella typhimurium was studied at various pH levels, temperatures, and amino acid and sorbate concentrations. Low pH had an apparent synergistic effect on amino acid uptake inhibition caused by sorbate. The relationship between sorbate concentration and the amount of amino acid uptake inhibition was not linear. Compared with L-histidine, L-serine uptake was more sensitive to changes in pH, temperature, and sorbate concentration. Various degrees of amino acid uptake inhibition by sorbate may be related to differences between amino acid transport systems. The results of this study suggest that sorbate acts as a noncompetitive inhibitor of amino acid uptake in S. typhimurium.  相似文献   

4.
Response surface model was developed for predicting the growth rates of Salmonella enterica sv. Typhimurium in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10 or 20 degrees C. In all experimental variables, the primary growth curves were well (r2 = 0.900 to 0.996) fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. Typhimurium were generally decreased by basic (9, 10) or acidic (5, 6) pH levels or increase of NaCl concentrations (0-8%). Response surface model was identified as an appropriate secondary model for growth rates on the basis of coefficient determination (r2 = 0.960), mean square error (MSE = 0.022), bias factor (B(f) = 1.023), and accuracy factor (A(f) = 1.164). Therefore, the developed secondary model proved reliable predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. Typhimurium in TSB medium.  相似文献   

5.
The growth of Salmonella typhimurium colonies on a model food system (agar solidified culture medium) was followed. Colony radius, determined using computer image analysis (IA) techniques, and viable cell number per colony were measured as indices of colony growth, and the effect of [NaCl] (0.5–3.5% (w/v)) and pH (7.0–5.0) on colony growth at 30°C was observed; colonies were point inoculated from serial dilutions. Colony growth (between 13 and 26 h after inoculation) was linear when expressed in terms of radius, and exponential when expressed in terms of viable cell number per colony. Overall, both increasing the [NaCl] and decreasing the pH had little effect on colony growth, other than to delay the onset of linear radial growth. Initial specific growth rate (μ) ranged from 0.73 to 0.87 h−1. Thin films of agar medium on microscope slides allowed the growth of microcolonies to be observed after just 4 h incubation. A greater understanding of the growth kinetics of bacterial colonies, and the effects of environment on such data, may enable better control of foodborne bacterial pathogens, and consequently an improvement in food product safety.  相似文献   

6.
7.
The effect of presence or absence of air on minimal medium recovery of heated Salmonella typhimurium was investigated. It was determined that the expression of minimal medium recovery is not only dependent on heat and a nutritionally complex medium but also on air. Unlike in the presence of air, in the presence of nitrogen, cells were able to recover their ability to grow on Trypticase soy agar enriched with 0.5% yeast extract (TSY) when incubated in TSY broth. It was established that in the presence of nitrogen the number of heat-TSY- induced, single-straneded breaks in deoxyribonucleic acid (DNA) were less than in the presence of air. Furthermore, the DNA breaks in nitrogen were repaired, whereas DNA breaks in air were not. The ability of cells to grow on TSY agar corresponded well with their ability to repair damage to DNA.  相似文献   

8.
The properties of homogeneous preparations of carbamoylphosphate synthetase (CPSase) from wild-type Salmonella typhimurium and a cold-sensitive derivative grown at different growth temperatures were examined. For the cold-sensitive mutant, the affinity for glutamine of the form of CPSase synthesized at 20 degrees C was lower than that of the form of the enzyme synthesized at 37 degrees C, regardless of the assay temperature. Thus, the cold sensitivity of the mutant reflects an effect of temperature on the synthesis of the enzyme rather than the activity of the folded enzyme. The two forms also differed in sensitivities to polyclonal antibodies as well as denaturational enthalpies. The combined results support the hypothesis that carAB mutations conferring cold sensitivity identify amino acid residues that are critical in the folding of CPSase. Quite unexpectedly, certain kinetic properties of cloned parent CPSase were also dependent on the growth temperature, although to a much lesser extent than those of the cold-sensitive mutant. The specific activity of wild-type CPSase synthesized at 15 degrees C was 60% of that synthesized at 37 degrees C. Further, CPSase synthesized at 15 degrees C was less thermostable than the enzyme synthesized at 37 degrees C; the difference in stability (delta G) is estimated to be 4,500 cal mol-1. Thus, variation of temperature within the physiological range for growth influences the folding and consequently the properties of CPSase from wild-type S. typhimurium.  相似文献   

9.
10.
11.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

12.
The ability of 13 strains of Salmonella , representing 12 serotypes, to grow in a tryptone-yeast extract-glucose medium, acidified with HC1 to pH values between 3.80 and 5.60 at intervals of 0.20 units, has been investigated. During incubation at 30°C, growth occurred at minimum pH values of 3.8–4.0 in 1–3 d. At 20°C, growth occurred at minimum pH values of 3.8–4.2 in 3–5 d. In tests incubated at 10°C, growth occurred at minimum pH values of 4.4–4.8 in between 10 and 19 d.  相似文献   

13.
An analysis of the effect of growth conditions on the growth (O.D. values) of five Vibrio anguillarum strains showed that the optima were as follows: pH 7, temperature 25 degrees C, NaCl concentration 2%, and O.D. estimates increased with the incubation time. The independent parameters, as well as their interactions significantly influenced the growth of Vibrio anguillarum (P less than 0.0001). Only the strain-salinity interaction was not always statistically significant. A restriction of the parameters to a level relevant for Danish marine recipients showed that pH and NaCl concentration (salinity) might be of minor importance while the temperature was always of high significance. The possible impact of these observations on local conditions is discussed.  相似文献   

14.
An analysis of the effect of growth conditions on the growth (O.D. values) of five Vibrio anguillarum strains showed that the optima were as follows: pH 7, temperature 25°C, NaCl concentration 2%, and O.D. estimates increased with the incubation time. The independent parameters, as well as their interactions significantly influenced the growth of Vibrio anguillarum ( P 0<0001). Only the strain-salinity interaction was not always statistically significant. A restriction of the parameters to a level relevant for Danish marine recipients showed that pH and NaCl concentration (salinity) might be of minor importance while the temperature was always of high significance. The possible impact of these observations on local conditions is discussed.  相似文献   

15.
The effect of replacement of ions in the extracellular medium on the swimming pattern of bacteria (Salmonella typhimurium) has been investigated. The replacement of chloride ion (Cl-) in the standard medium by methanesulfonate ion (MS-) or by propionate ion (Pr-) induced an increase in the tumbling frequency, or a decrease of the end-to-end distances of tracks. Replacement of MS- by Cl- resulted in transient depression of tumbling, and replacement of Pr- by Cl- resulted in immediate recovery of normal swimming. The replacement of cations was not very effective. The experimental data, including the dependence of the effect of replacement on the ion concentration, are consistent with the ideas that the tumbling frequency increases with depolarization of the bacterial membrane and that such anions as MS- and Pr- are more able to permeate the membrane than is Cl-.  相似文献   

16.
17.
Lag and generation times for the growth of Salmonella typhimurium on sterile lean beef were modeled as functions of cooling time under various carcass-chilling scenarios. Gompertz growth models were fit to the log10 colony counts over time at each of six temperatures in the range of 15 to 40 degrees C. Lag and generation times were defined as the points at which the second and first derivatives, respectively, of each growth curve attained a maximum. Generation time and lag time parameters were modeled as functions of temperature by use of exponential-decay models. The models were applied to typical beef carcass-cooling scenarios to predict the potential growth of S. typhimurium during the cooling of beef. Validation studies indicated no significant difference between the observed and predicted bacterial populations on inoculated lean and fatty beef tissues cooled at either 6 or 9 degrees C/h.  相似文献   

18.
J S Dickson  G R Siragusa    J E Wray  Jr 《Applied microbiology》1992,58(11):3482-3487
Lag and generation times for the growth of Salmonella typhimurium on sterile lean beef were modeled as functions of cooling time under various carcass-chilling scenarios. Gompertz growth models were fit to the log10 colony counts over time at each of six temperatures in the range of 15 to 40 degrees C. Lag and generation times were defined as the points at which the second and first derivatives, respectively, of each growth curve attained a maximum. Generation time and lag time parameters were modeled as functions of temperature by use of exponential-decay models. The models were applied to typical beef carcass-cooling scenarios to predict the potential growth of S. typhimurium during the cooling of beef. Validation studies indicated no significant difference between the observed and predicted bacterial populations on inoculated lean and fatty beef tissues cooled at either 6 or 9 degrees C/h.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号