首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleosome formation on inverted repeats or on some alternations of purines and pyrimidines can be inhibited in vitro by DNA supercoiling through their supercoiling-induced structural transitions to cruciforms or Z-form DNA, respectively. We report here, as a result of study of single nucleosome reconstitutions on a DNA minicircle, that a physiological level of DNA supercoiling can also enhance nucleosome sequence preference. The 357 base-pair minicircle was composed of a promoter of phage SP6 RNA polymerase joined to a 256 base-pair fragment containing a sea urchin 5 S RNA gene. Nucleosome formation on the promoter was found to be enhanced on a topoisomer with in vivo superhelix density when compared to topoisomers of lower or higher superhelical densities, to the nicked circle, or to the linear DNA. In contrast, nucleosomes at other positions appeared to be insensitive to supercoiling. This observation relied on a novel procedure for the investigation of nucleosome positioning. The reconstituted circular chromatin was first linearized using a restriction endonuclease, and the linear chromatin so obtained was electrophoresed as nucleoprotein in a polyacrylamide gel. The gel showed well-fractionated bands whose mobilities were a V-like function of nucleosome positions, with the nucleosome near the middle migrating less. This behavior is similar to that previously observed for complexes of sequence-specific DNA-bending proteins with circularly permuted DNA fragments, and presumably reflects the change in the direction of the DNA axis between the entrance and the exit of the particle. Possible mechanisms for such supercoiling-induced modulation of nucleosome formation are discussed in the light of the supercoiling-dependent susceptibility to cleavage of the naked minicircle with S1 and Bal31 nucleases; and a comparison between DNase I cleavage patterns of the modulated nucleosome and of another, non-modulated, overlapping nucleosome.  相似文献   

2.
Chromatin reconstitution on small DNA rings. I   总被引:6,自引:0,他引:6  
Chromatin was reconstituted using the four core histones on 359 base-pair nicked and closed rings by salt dialysis and/or at physiological ionic strength by means of polyglutamic acid. The products, which consisted of mono- and dinucleosomes, were characterized by gel electrophoresis, sedimentation in sucrose gradients and high-resolution electron microscopy. The results were as follows. (1) The efficiency of the reconstitution was found first to increase with the negative linking difference of the closed rings relative to their relaxed configuration to reach a maximum for -2 turns, and then to decrease for the largest difference of -3 turns. Discrepancies between topoisomers were also observed with regard to differential formation of mono- and dinucleosomes. Topoisomer -1 reconstituted monomers easily but reconstituted dimers with difficulty, whilst this discrimination was virtually absent in the case of topoisomers -2 and -3. Moreover, mononucleosomes on the nicked ring were, with respect to their electrophoretic mobility, similar to mononucleosomes formed on topoisomer -1 but not to those on the other topoisomers, whose mobilities were greater. These features were interpreted in terms of the linking number change associated with the formation of a nucleosome monomer and dimer, approximately -1 and -2 turns, respectively. (2) Two dinucleosome subtypes were found to form in a sequential manner. Their different electrophoretic mobilities and sedimentation coefficients suggested that the early subtype is lighter, probably because of an incomplete histone complement in the second nucleosome of that subtype as a result of an impaired co-operativity in octamer assembly due to the small ring size. (3) An electron microscopic examination of the chromatin reconstituted on topoisomer -2 revealed that both mono- and dinucleosomes adopt two different, salt-dependent, morphologies each: in type I, entering and exiting DNAs do not cross, whilst they do in type II. Type I configuration is favoured in lower salt, whereas type II is favoured in higher salt. Such behaviour explains why nucleosomes in dimers were found to be always diametrically opposed on the rings rather than sometimes apposed, as would have been expected from a random deposition of the histone cores.  相似文献   

3.
The thermal flexibility of DNA minicircles reconstituted with single nucleosomes was measured relative to the naked minicircles. The measurement used a new method based on the electrophoretic properties of these molecules, whose mobility strongly depended on the DNA writhe, either of the whole minicircle, when naked, or of the extranucleosomal loop, when reconstituted. The experiment was as follows. The DNA length was first increased by one base-pair (bp), and the correlative shift in mobility resulting from the altered DNA writhe was recorded. Second, the gel temperature was increased so that the former mobility was restored. Under these conditions, the untwisting of the thermally flexible DNA due to the temperature shift exactly compensates for the increase in the DNA mean twist number resulting from the one bp addition. The relative thermal flexibility was then calculated as the ratio between the increases in temperature measured for the naked and the reconstituted DNAs, respectively. The figure, 0.69 (+/- 0.07), was used to derive the length of DNA in interaction with the histones, 109 (+/- 25) bp. Such length was in good agreement with the mean value of 115 bp we have previously obtained from the distribution of the angles between DNAs at the entrance and exit of similar nucleosomes measured from high resolution electron microscopy. This consistency further reinforces our previous conclusion that minicircle-reconstituted nucleosomes, with 1.3(109/83) to 1.4(115/83) turns of superhelical DNA, show no crossing of entering and exiting DNAs when the loop is in its most probable configuration, and therefore, that these nucleosomes behave topologically as "single-turn" particles. The present data are also within the range of values, 50 to 100 bp of thermally rigid DNA per nucleosome, obtained by others for yeast plasmid chromatin, suggesting that the "single-turn" particle notion may be extended to this particular case of naturally-occurring H1-free chromatin. However, these data are quite different from the 230 bp figure derived from thermal measurements of reconstituted H1-free minichromosomes. It is proposed that nucleosome interactions occurring in this chromatin, but not in yeast chromatin, may be partly responsible for the discrepancy.  相似文献   

4.
5.
Chromatin and nucleosome structure.   总被引:13,自引:12,他引:1       下载免费PDF全文
Chromatin nucleosomes (mononucleosomes through pentanucleosomes) have been isolated by staphylococcal nuclease digestion of calf thymus nuclei. The peak value ellipticity is the same for all oligomers, 1900 deg cm2, mol-1 at 280-nm, 23 degrees C. The dh280/dT vs T show a progressive increase in Tm of the main thermal band (73.5 degrees C, monomer; 79 degrees C, pentamer). Very small amounts of free DNA can be observed in the melting profiles, and shoulders at 60 degrees C and 93 degrees C appear and increase in magnitude as the particle size increases. The magnitude of the change, delta[theta]280, increases with oligomer size. This pattern could result from an initial unfolding of an asymmetric assembly of nucleosomes (polynucleosome superhelix) in addition to the denaturation of the internal nucleosome structure, and a subsequent or simultaneous denaturation of the double strand DNA. The extent of this unfolding appears to depend upon the size of the oligomer and therefore implies interactions between asymmetrically assembled neighboring nucleosomes.  相似文献   

6.
7.
Interlocked DNA rings. II. Physicochemical studies   总被引:4,自引:0,他引:4  
J C Wang 《Biopolymers》1970,9(4):489-502
Several species of topologically interlocked λb2b5c DNA rings (catenanes) have been prepared in vitro. The sedimentation behavior of dimeric catenanes containing 0, 1, or 2 covalently closed duplex rings has been studied as a function of the superhelical density of the covalently closed ring or rings. In general, if XtpY represents rings X and Y topologically interlocked, the sedimentation coefficient of this species, SXtpY, is related to the sedimentation coefficients SX and SY of the component rings by the empirical relationship SXtpY/SY = [(MX + MY)/MY] [1 + (MX/MY)1.78(SY/SX)1.78]?0.56 This equation can also be extended to the case where three monomeric rings are topologically linked in a chain. For two topologically interlocked monomeric rings with neither ring covalently closed, the sedimentation coefficient is 1.35 times that of the monomeric ring. This is different from results reported for mitochondrial and P22 catenanes by others. Several possibilities are discussed to account for this discrepancy. The sedimentation coefficient of a species containing one covalently closed duplex ring and a single-stranded ring was also measured in an alkaline medium. This species, which can be easily derived from a dimeric catenane containing two covalently closed duplex rings, is particularly useful for the identification of covalently closed dimeric catenanes. Some electron microscopic studies of these interlocked rings are presented in an accompanying paper.  相似文献   

8.
In the presence of a molar excess of eukaryotic DNA topoisomerase II and an appropriate concentration of dextran sulfate, relaxed closed circular DNA is converted to a negatively supercoiled form. The reaction is dependent on ATP. Neither adenosine 5'-[beta,gamma-imido]-triphosphate nor adenosine 5'-[gamma-thio]triphosphate can substitute for ATP. The negative supercoils formed are relaxed by subsequent addition of DNA topoisomerase I to the supercoiling reaction mixture. Covalent closure of a nicked circular DNA in the presence of DNA topoisomerase II and dextran sulfate but in the absence of ATP causes a small decrease in the linking number. These results suggest that when an appropriate concentration of dextran sulfate is present, the binding of a molar excess of eukaryotic DNA topoisomerase II constrains a small number of negative supercoils in DNA, which in turn generate unconstrained negative supercoils at the expense of ATP.  相似文献   

9.
DNA gyrase from Bacillus subtilis 168 was purified by affinity chromatography on novobiocin-Sepharose and shown to consist of two subunits, A and B, with molecular weights of 100,000 and 85,000, respectively. The B subunits, which contains novobiocin-sensitive. ATPase activity, could complement the gyrA protein of Escherichia coli. No complementation was detected between the A subunit and the E. coli gyrB protein.  相似文献   

10.
We have used new methods for chromatin isolation, together with conventional methods for measuring the nucleosome repeat length, to determine the repeat length of Schizosaccharomyces pombe chromatin. We obtain a result of 156(+/- 2) bp. Equivalent results are obtained using a psoralen crosslinking method for measuring the repeat length in viable spheroplasts. That result, together with other control experiments, rules out many possible artifacts. The measured value of 156(+/- 2) bp is smaller than the length of DNA found in the chromatosome. Thus, the chromatosome cannot be the fundamental unit of chromatin structure in all eukaryotes. The crossed linker model of chromatin higher order structure is incompatible with a nucleosome repeat length of 156 bp, and thus cannot apply to all eukaryotes. The solenoid model of higher order structure is compatible with this repeat length only if the solenoid is right-handed. We note two other properties of this chromatin. (1) Early in digestion, the DNA length of mononucleosomes from S. pombe and Aspergillus nidulans exceeds the nucleosome repeat length. (2) Many methods for isolating chromatin from S. pombe yield an apparent nucleosome repeat length of less than or equal to 140 bp; this result is found to be an artifactual consequence of nucleosome sliding.  相似文献   

11.
DNA supercoiling in gyrase mutants.   总被引:10,自引:7,他引:10       下载免费PDF全文
Nucleoids isolated from Escherichia coli strains carrying temperature-sensitive gyrA or gyrB mutations were examined by sedimentation in ethidium bromide-containing sucrose density gradients. A shift to restrictive temperature resulted in nucleoid DNA relaxation in all of the mutant strains. Three of these mutants exhibited reversible nucleoid relaxation: when cultures incubated at restrictive temperature were cooled to 0 degree C over a 4- to 5-min period, supercoiling returned to levels observed with cells grown at permissive temperature. Incubation of these three mutants at restrictive temperature also caused nucleoid sedimentation rates to increase by about 50%.  相似文献   

12.
Novobiocin, an inhibitor of gyrase-induced DNA supercoiling and DNA replication in prokaryotes, inhibited the incorporation of DNA precursors into DNA in both intact and permeable Chinese hamster ovary cells; much higher concentrations were required for permeable cells, in which no new replicons were initiated. Nucleoids were prepared from cells that were incubated for 60 min with 200 micrograms/ml novobiocin, made permeable, and incubated with 0--50 micrograms/ml ethidium bromide. Sedimentation of the nucleoids in neutral sucrose gradients suggested that the number of supercoils in the average nucleoid had been reduced by prior incubation with novobiocin. In intact cells, novobiocin is required inside the cell for continued inhibition of DNA synthesis, suggesting that it does not act directly on the DNA. Alkaline sucrose gradient profiles of DNA synthesized in the presence of novobiocin in intact cells indicated that the drug inhibited replicon initiation while having little if any effect on chain elongation. These data are consistent with the idea that an activity similar to the bacterial gyrase generates supercoils in mammalian DNA and produces the proper conformation for the initiation of DNA replication.  相似文献   

13.
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.  相似文献   

14.
Bacterial DNA gyrase and the eukaryotic type II DNA topoisomerases are ATPases that catalyse the introduction or removal of DNA supercoils and the formation and resolution of DNA knots and catenanes. Gyrase is unique in using ATP to drive the energetically unfavourable negative supercoiling of DNA, an example of mechanochemical coupling: in contrast, eukaryotic topoisomerase II relaxes DNA in an ATP-requiring reaction. In each case, the enzyme-DNA complex acts as a 'gate' mediating the passage of a DNA segment through a transient enzyme-bridged double-strand DNA break. We are using a variety of genetic and enzymic approaches to probe the nature of these complexes and their mechanism of action. Recent studies will be described focusing on the role of DNA wrapping on the A2B2 gyrase complex, subunit activities uncovered by using ATP analogues and the coumarin and quinolone inhibitors, and the identification and functions of discrete subunit domains. Homology between gyrase subunits and the A2 homodimer of eukaryotic topo II suggests functional conservation between these proteins. The role of ATP hydrolysis by these topoisomerases will be discussed in regard to other energy coupling systems.  相似文献   

15.
DNA in the nucleosome   总被引:13,自引:0,他引:13  
R H Morse  R T Simpson 《Cell》1988,54(3):285-287
  相似文献   

16.
G L?ngst  P B Becker 《Molecular cell》2001,8(5):1085-1092
The ATPase ISWI is the molecular motor of several remodeling factors that trigger nucleosome sliding in vitro. In search for the underlying mechanism, we found that unilateral binding of ISWI to a model nucleosome correlated with directional movement of the nucleosome toward the enzyme. It has been proposed that ISWI might loosen histone-DNA interactions through twisting DNA. However, nucleosome sliding assays on nicked DNA substrates suggest that propagation of altered twist is not involved. Surprisingly, nicks in the linker DNA in front of the nucleosome facilitate sliding. These data suggest that the rate of nucleosome sliding is limited by a conformational change other than twisting, such as the formation of a short loop, of DNA at the entry into the nucleosome.  相似文献   

17.
18.
Chromatin fibers were studied in solutions of mM monovalent salt by small angle neutron scattering. The variation of the cross section radius of gyration with H2O/D2O contrast shows that DNA is at much larger average radial distances from the fiber axis than histone. Consequently, the coils of DNA in a core particle must be approximately parallel to the fiber direction. The radii of gyration suggest that the maximum diameter of chromatin and nucleosomes is approximately 14 nm and that the DNA id distributed in two radial layers. The concentration dependence of the scattering maxima near 14 nm spacings furnishes independent support for a 14 nm external diameter and can be interpreted by a double DNA layer configuration.  相似文献   

19.
The influence of subnormal temperatures (2, 15 and 28 degrees C) on the effects of radiation in MCF-7 cell cultures was studied using the fluorescent (halo) nucleoid assay. Increasing the propidium iodide (PI) concentration (0.5-7.5 microgram/ml PI) resulted in relaxation, i.e. in increasing nucleoid area; higher concentrations up to 50 microgram/ml caused rewinding that resulted in nucleoid contraction. Rewinding was inhibited by X irradiation (2, 4 and 8 Gy) in a dose-dependent way. Incubation at subnormal temperature did not influence the nucleoid area but did reduce radiation-induced inhibition of rewinding after 4 Gy. The low temperature (2 degrees C) during rather than prior to irradiation appeared to protect from radiation-induced inhibition of nucleoid rewinding. Decreased temperature during irradiation may change the conditions so as to reduce DNA- matrix damage induced by radiation.  相似文献   

20.
Incubation of MSB cells with cytosine arabinoside (1-beta-D-arabinofuranosylcytosine, ara-C) inhibits 3H-thymidine incorporation into nascent DNA while nucleosome core histone synthesis proceeds in molar stoichiometry at about 20% of control rates. The excess nascent histone is incorporated into chromatin and nucleosome cores are assembled normally on the small amount of DNA which is synthesized at submaximal levels of ara-C. This DNA becomes packaged into a shortened nucleosome repeat, however. These results indicate that the nucleosome core is a strongly conserved unit of chromatin replication and suggest that the stoichiometry of nascent histone to DNA may be one factor influencing the establishment of the nucleosome repeat length. It cannot be the only factor, however, since the closely packed nucleosomes made in the presence of ara-C begin to return to their normal spacing within six hours after reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号