首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bullous pemphigoid antigen 180 (BP180) is a component of hemidesmosomes, i.e., cell-substrate adhesion complexes. To determine the function of specific sequences of BP180 to its incorporation in hemidesmosomes, we have transfected 804G cells with cDNA-constructs encoding wild-type and deletion mutant forms of human BP180. The results show that the cytoplasmic domain of BP180 contains sufficient information for the recruitment of the protein into hemidesmosomes because removal of the extracellular and transmembrane domains does not abolish targeting. Expression of chimeric proteins, which consist of the membrane targeting sequence of K-Ras fused to the cytoplasmic domain of BP180 with increasing internal deletions or lacking the NH2 terminus, indicates that the localization of BP180 in hemidesmosomes is mediated by a segment that spans 265 amino acids. This segment comprises two important regions located within the central part and at the NH2 terminus of the cytoplasmic domain of BP180.

To investigate the effect of the α6β4 integrin on the subcellular distribution of BP180, we have transfected COS-7 cells, which lack α6β4 and BP180, with cDNAs for BP180 as well as for human α6A and β4. We provide evidence that a mutant form of BP180 lacking the collagenous extracellular domain as well as a chimeric protein, which contains the entire cytoplasmic domain of BP180, are colocalized with α6β4. In contrast, when cells were transfected with cDNAs for α6A and mutant forms of β4, either lacking the cytoplasmic COOH-terminal half or carrying phenylalanine substitutions in the tyrosine activation motif of the cytoplasmic domain, the recombinant BP180 molecules were mostly not colocalized with α6β4, but remained diffusely distributed at the cell surface. Moreover, in cells transfected with cDNAs for α6A and a β4/β1 chimera, in which the cytoplasmic domain of β4 was replaced by that of the β1 integrin subunit, BP180 was not colocalized with the α6β4/β1 chimera in focal adhesions, but remained again diffusely distributed. These results indicate that sequences within the cytoplasmic domain of β4 determine the subcellular distribution of BP180.

  相似文献   

2.
Ultrastructure of the renette cell and caudal glands was studied in the free-living aquatic nematode Sphaerolaimus gracilis. The renette cell occurred posterior to the esophageal-intestinal junction and opened through an ampulla to a ventral pore behind the nerve ring. The caudal gland system of the tail consisted of two gland cells opening through separate pores and 2 to 3 other gland cells of a different type opening through a common pore. The renette cell and the two caudal gland cells were similar and both contained secretory granules, 0.5-1.5 μm in diameter. The material released attached the nematode to the substrate. The renette ampulla was surrounded by a specialized cell, the ampulla cell, which had characteristics of myoepithelium. A plug or valve structure connected to the ampulla cell may regulate the output of the secretory material. The ampulla cell is able to contract and thus is probably under direct neuronal control. Other cells in the renette ampulla region of body cavity were termed supporting cells. Living, cold-relaxed nematodes were attached to sediment particles in the renette pore region and at the tail tip. Release from sediment particles was mechanical at the renette cell discharge site but appeared to be chemical at the caudal gland. In behavioral experiments, nematodes in a water current had the ability to release a thread from the caudal glands while maintaining contact with a sediment particle attached to the tail end. If the thread was strong enough, it also could be used to change location. Nematodes anchored by the thread from the caudal glands to a sediment particle could float in water currents until they attached themselves to another sediment particle with the help of secretions from the renette cells.  相似文献   

3.
Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.  相似文献   

4.
Summary 1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-l-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.  相似文献   

5.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading.  相似文献   

6.
Recently we have demonstrated that a 40kD human epithelium-specific glycoprotein exhibits the features of a homophilic cell-cell adhesion molecule, when expressed in transfected murine cells. We suggested the name Ep-CAM for this molecule (Litvinov et al., J. Cell Biol., 125: 437-446). Here we investigate the possible biological function of Ep-CAM in its natural environment—cells of epithelial origin. Immunolocalization of Ep-CAM in tissues and in cultures of epithelial/carcinoma cells showed that the majority of the Ep-CAM molecules are localized at cell-cell boundaries, predominantly along the whole lateral domain of polarized cells. In vitro, on single cells in suspension, the Ep-CAM molecules are present on the entire cell surface, and when the single cells grow attached, Ep-CAM is present at their pseudo-apical domain. During formation of intercellular contacts by such single cells, the majority of the Ep-CAM molecules are redistributed from the pseudoapical to the lateral domain of the cell membrane. Attachment of cells to the substrate does not cause redistribution of the molecules to the site of substrate attachment irrespective of the adhesive substrate (fibronectin, collagens, laminin, EHS-matrigel were tested). The monoclonal antibody 323/A3, reactive with the extracellular domain of the Ep-CAM molecule, has a strong negative effect on the aggregating behaviour of COV362 ovarian carcinoma cells and RC-6 immortalized mammary epithelial cells. The mAb affected cell aggregation in both cell lines in the presence of Ca++, but with RC-6 cells the effect was more pronounced in low-calcium medium. The effects of the 323/A3 mAb on the already established intercellular contacts was not significant. The data presented demonstrate that the Ep-CAM molecules are functionally active in the epithelial and carcinoma cells tested, are capable of mediating Ca1+-independent intercellular adhesions, and are not likely to be involved in cell-substrate adhesion.  相似文献   

7.
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28 , 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.  相似文献   

8.
The prostate epithelium is composed of basal (BC), luminal (LEC), and neuroendocrine (NEC) cells. It is unclear how many subtypes of BCs in the prostate and which subtype of BCs contains the main stem cell niche in the adult prostate. Here we report seven BC subpopulations according to their p63, cytokeratin 14 (K14) and K5 expression patterns, including p63-positive/K14-negative/K5-negative (p63+/K14-/K5-), p63-/K14+/K5-, p63-/K14-/K5+, p63+/K14+/K5-, p63+/K14-/K5+, p63-/K14+/K5+, and p63+/K14+/K5+ BCs. We generated a p63-CreERT2 knock-in mouse line that expresses tamoxifen-inducible Cre activity in the p63-expressing cells, including the prostate BCs. We then crossbred this line with ROSA26R mice, and generated p63-CreERT2×ROSA26R bi-genic mice harboring the Cre-activated β-galactosidase reporter gene. We treated these bi-genic mice with tamoxifen to mark the p63+ BCs at different ages or under different hormonal conditions, and then traced the lineage differentiation of these genetically labeled BCs. We discovered that these p63+ BCs contain self-renewable stem cells in culture and efficiently differentiated into LECs, NECs and BCs in the postnatal, adult and re-generating mouse prostates. Therefore, BC population contains heterogeneous BCs that express different combinations of the p63, K14 and K5 differentiation markers. Because K14+ and K5+ BCs were previously shown to be extremely inefficient to produce LECs in adulthood, we propose that the p63+/K5-/K14- subpopulation of BCs contains most stem-like cells, especially in adult animals.  相似文献   

9.
A key step in human colon cancer development includes the hyperactivation of Wnt/β‐catenin signaling and the induction of β‐catenin‐TCF target genes that participate in colon cancer progression. Recent studies identified members of the immunoglobulin‐like cell adhesion molecules (IgCAM) of the L1CAM family (L1 and Nr‐CAM) as targets of β‐catenin‐TCF signaling in colon cancer cells. L1 was detected at the invasive front of colon cancer tissue and confers metastasis when overexpressed in cells. In contrast to L1, we did not detect in colon cancer cells significant levels of another IgCAM family of molecules, the nectin‐like (Necl) receptors Necl1 and Necl4, while Necl4 was previously found in the normal small intestine and colon tissues. We studied the properties of colon cancer cells in which Necl4 and Necl1 were expressed either alone, or in combination, and found that such cells display a wide range of properties associated with tumor suppression. Expression of both Necl1 and Necl4 was the most efficient in suppressing the tumorigenicity of colon cancer cells. This was associated with enhanced rates of apoptosis and change in several apoptosis‐related markers. In contrast to its capacity to suppress tumorigenesis, Necl4 was unable to affect the highly malignant and metastatic capacities of colon cancer cells in which L1 was overexpressed. Our results suggest that various IgCAM receptor families play different roles in affecting the tumorigenic function of the same cells, and that Necl1 and Necl4 can fulfill a tumor suppressive role. J. Cell. Biochem. 108: 326–336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The C-type lectin macrophage galactose-type lectin (MGL) exerts an immunosuppressive role reflected by its interaction with terminal GalNAc moieties, such as the Tn antigen, on CD45 of effector T cells, thereby down-regulating T cell receptor signaling, cytokine responses, and induction of T cell death. Here, we provide evidence for the pathways that control the specific expression of GalNAc moieties on human CD4+ T cells. GalNAc epitopes were readily detectable on the cell surface after T cell activation and required de novo protein synthesis. Expression of GalNAc-containing MGL ligands was completely dependent on PKC and did not involve NF-κB. Instead, activation of the downstream ERK MAPK pathway led to decreased mRNA levels and activity of the core 1 β3GalT enzyme and its chaperone Cosmc, favoring the expression of Tn antigen. In conclusion, expression of GalNAc moieties mirrors the T cell activation status, and thus only highly stimulated T cells are prone to the suppressive action of MGL.  相似文献   

11.
Abstract: Scopolamine (0.15 mg/kg), a muscarinic antagonist, when administered during training or at a discrete 6-h posttraining time point, is demonstrated to inhibit the recall of a step-down passive avoidance response when tested at 24 and 48 h after task acquisition. Nefiracetam (3 mg/ kg), a piracetam-related nootropic, when given with scopolamine during training tended to improve task recall, and this effect was more pronounced when given at the 6-h posttraining time. Co-administration of nefiracetam with scopolamine was not necessary to achieve the antiamnesic action, as nefiracetam given during training significantly improved the memory deficits produced by scopolamine at the 6-h posttraining time. The paradigm-specific increase in hippocampal neural cell adhesion molecule sialylation, which is observed during consolidation of a passive avoidance response, was attenuated by the presence of scopolamine during training and at the 6-h posttraining time, and this effect was reversed by co-administration of nefiracetam, albeit in a paradigm-independent manner. These results suggest nefiracetam exerts a neurotrophic action that protects memory consolidation from drug inter- ventive insults.  相似文献   

12.
The 180 kDa component of the neural cell adhesion molecule (NCAM-180), total NCAM (NCAM-total) and the polysialic acid modification of NCAM (PSA) show similar temporal and spatial regulation in the developing tecta of Pleurodeles waltl (salamander) and Discoglossus pictus (frog). Whereas NCAM-total is found throughout the tectal tissue on neurons and glia, NCAM-180 is only found on nonproliferating neurons and in fiber layers. PSA is expressed by a subset of NCAM-180-positive cells. Western blots show that there is little polysialylated NCAM-140 in the developing amphibian tectum. Regions unstained for PSA and NCAM-180 correspond precisely to the growth zones of the tectum. NCAM-180 and PSA are not present in tecta of early larvae. Staining intensity is strongest at midlarval stages for both antigens. At metamorphosis, PSA is strongly downregulated, whereas NCAM-180 is downregulated in juvenile animals. Both antigens are still present in fiber layers of adult animals. In dissociated tissue culture of the frog tectum, NCAM-180 is not present on astrocytes, but on neuronal cells. Expression is enhanced at cell contact sites, suggesting that NCAM-180 is involved in cell contact stabilization. This study shows that general features of temporal and spatial regulation of NCAM isoforms and PSA are highly conserved in frog and salamander tecta, despite large differences in the rate of cell migration and the degree of lamination in these homologous brain regions.  相似文献   

13.
14.
Cell adhesion molecules (CAMs) are important in prokaryotes and eukaryotes for cell–cell and cell–substratum interactions. The characteristics of adhesive proteins in the model diatom Phaeodactylum tricornutum were investigated by bioinformatic analysis and in vivo characterization. Bioinformatic analysis of the protein coding potential of the P. tricornutum genome used an amino‐acid profile that we developed as a new system to identify uncharacterized or novel CAMs. Putative diatom CAMs were identified and seven were characterized in vivo, by generation of transgenic diatom lines overexpressing genes encoding C‐terminal yellow fluorescent protein (YFP) fusion proteins. Three of these selected genes encode proteins with weak similarity to characterized proteins, a c‐type lectin and two fasciclins, whereas the others are novel. The resultant cell lines were investigated for alterations in their adhesive ability. Whole cell‐substratum adhesion strength was measured in a fully turbulent flow chamber, while atomic force microscopy was used to quantify the relative frequency of adhesion, as well as the length and strength of single molecules in the secreted mucilage. Finally, quartz crystal microbalance analysis characterized the visco‐elastic properties and interaction of the mucilage–substratum interface. These combined studies revealed a range of phenotypes affecting adhesion, and led to the identification of candidate proteins involved in diatom adhesion. In summary, our study has for the first time combined bioinformatics and molecular physiological studies to provide new insights into diatom adhesive molecules.  相似文献   

15.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

16.
The green alga Haematococcus pluvialis accumulates massive amounts of the red pigment astaxanthin in response to stimuli inducing it to form cysts. During the encystment process the cell wall undergoes a clear hardening and thickening. In this work, a cell wall fraction withstanding successive acid and basic hydrolysis was isolated and proves to be algaenan by Fourier transform infrared spectroscopy. This compound is equally abundant in nonmotile vegetative cells and astaxanthin-rich cysts. This finding indicates that the synthesis of algaenan does not require the activation of the machinery for the massive production of secondary carotenoids. We conclude that algaenan cannot cause the changes occurring in the cell wall during the encystment process without the involvement of other cell wall components. Received November 7, 2000; accepted April 3, 2001.  相似文献   

17.
Fatty acid-binding proteins (FABP) are small cytosolic proteins which are thought to play a key role in fatty acid metabolism. The intestine contains the intestinal (I-FABP) and the liver (L-FABP) isoforms, but their regulation is still poorly documented. In order to find suitable conditions for studying the regulation of the two FABP isoforms in Caco-2 cells, we investigated the effects of the presence of collagen during cell proliferation or differentiation. When collagen was present only during cell proliferation on culture dishes, I-FABP expression was enhanced, whereas sucrase-isomaltase was unaffected and L-FABP expression was merely accelerated. In contrast, when collagen was present during cell differentiation on filter inserts, both I-FABP and sucrase-isomaltase were strongly reduced, but L-FABP was not affected. Under the former conditions (the more suitable for studying FABP regulation), the peroxysome proliferator-activated receptor (PPAR) activators, clofibrate and α-bromopalmitate, enhanced the two isoforms. This study, which is the first one providing a quantitative protein analysis of I-FABP and L-FABP in Caco-2 cells, demonstrates different time courses of expression of these proteins during cell differentiation. It also shows that I-FABP is specifically regulated by collagen and that, under conditions optimal for their expression, both isoforms are modulated by metabolic factors.  相似文献   

18.
19.
Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号