首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic strain has been shown to modulate endothelial cell (EC) morphology, proliferation, and function. We have recently reported that the focal adhesion proteins focal adhesion kinase (pp125FAK) and paxillin, are tyrosine phosphorylated in EC exposed to strain and these events regulate the morphological change and migration induced by cyclic strain. Integrins are also localized on focal adhesion sites and have been reported to induce tyrosine phosphorylation of pp125FAK under a variety of stimuli. To study the involvement of different integrins in signaling induced by cyclic strain, we first observed the redistribution of α and β integrins in EC subjected to 4 h cyclic strain. Human umbilical vein endothelial cells (HUVEC) seeded on either fibronectin or collagen surfaces were subjected to 10% average strain at a frequency 60 cycles/min. Confocal microscopy revealed that β1 integrin reorganized in a linear pattern parallel with the long axis of the elongated cells creating a fusion of focal adhesion plaques in EC plated on either fibronectin (a ligand for α5β1) or collagen (a ligand for α2β1) coated plates after 4 h exposure to cyclic strain. β3 integrin, which is a vitronectin receptor, did not redistribute in EC exposed to cyclic strain. Cyclic strain also led to a reorganization of α5 and α2 integrins in a linear pattern in HUVEC seeded on fibronectin or collagen, respectively. The expression of integrins α5, α2, and β1 did not change even after 24 h exposure to strain when assessed by immunoprecipitation of these integrins. Cyclic strain-induced tyrosine phosphorylation of pp125FAK occurred concomitant with the reorganization of β1 integrin. We concluded that α5β1 and α2β1 integrins play an important role in transducing mechanical stimuli into intracellular signals. J. Cell. Biochem. 64:505–513. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

3.
Binding of integrins to the extracellular matrix (ECM) activates various signal transduction pathways and regulates gene expression in many cell types. Integrin-dependent cytoplasmic protein/protein interactions are necessary for activation of those signal transduction cascades. In our studies we investigated a possible association of pp125FAK, an adhesion involved tyrosine kinase, with the integrin β1 subunit. Further we wanted to know to which extent protein tyrosine phosphorylation affects cell adhesion to the ECM and the possible β1 integrin/pp125FAKcomplex. We were able to show that in HaCaT cells (a human keratinocyte derived cell line) the integrin β1 subunit is associated with tyrosine kinase pp125FAK. This association was observed in ECM-adherent cells and nonadherent cells and is independent of tyrosine phosphorylation. However, cell adhesion of HaCaT cells to specific substrates requires tyrosine phosphorylation since genistein treatment that blocks phosphorylation of many cellular proteins as pp125FAKled to a reduced substrate adhesion.  相似文献   

4.
The adhesion of ADP-stimulated platelets to immobilized fibrinogen induces the tyrosine phosphorylation of multiple proteins which include pp72syk and pp125FAK. The phosphorylation of these two proteins increases as function of time of platelet adhesion to fibrinogen; however, pp72syk results strongly phosphorylated already after 15 min. whereas pp125FAK reaches high levels of phosphorylation after 1 h of platelet adhesion. Phosphorylation of both proteins is only slightly detectable when platelets are held in suspension or when platelets are allowed to adhere to bovine serum albumin, a non-specific substrate. Echistatin, an Arg-Gly-Asp (RGD)-containing snake-venom protein, affects protein tyrosine phosphorylation promoted by platelet adhesion to fibrinogen, by causing an approximately 44% and 39% decrease of pp72syk and pp125FAK phosphorylation, respectively. The interaction of echistatin with fibrinogen receptor glycoprotein Ilb-Illa on platelet surface might be responsible for the block of integrin-mediated signaling cascade, including pp72syk and pp125FAK inactivation.  相似文献   

5.
6.
Previous studies have characterized pp125FAK as a focal adhesion (FA)-associated non-receptor tyrosine kinase. However, there are few data available on the expression and localization of this kinase in tissues. In this study we show that in human tissues the highest expression of pp125FAK is found in some developing epithelia, where pp125FAK is associated with either intercellular junctions or with sites of adhesion to the basement membrane, whereas the same adult tissues show only a faint reactivity. Connective tissue cells do not show any reactivity for pp125FAK in vivo, but developing arterial smooth muscle expresses pp125FAK at high levels. The expression pattern in malignant tissues is variable, but most carcinomas do not express this kinase. In primary cultures of human amnion epithelial cells pp125FAK first becomes associated with the polarized adhesion lamellae, but is subsequently translocated to the forming adherens junctions (AJs). Later upon culturing pp125FAK becomes associated with prominent FAs, as in cultured cell lines. Taken together, our results suggest that the association of pp125FAK with FAs in cultured cells is principally due to a process of adaptation, whereas in vivo pp125FAK mainly functions as a regulatory component of intercellular AJs and cell-matrix adhesions of developing epithelia and also in developing arterial smooth muscle.  相似文献   

7.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

8.
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.  相似文献   

9.
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.  相似文献   

10.
As cells adhere to extracellular matrix proteins, several focal adhesion proteins become tyrosine phosphorylated. One of the most prominent of these has been identified as the tyrosine kinase p125FAK (focal adhesion kinase, FAK). An interaction between FAK and members of the Src family tyrosine kinases p59fyn, pp60v-src, and activated pp60c-src (527F) has been demonstrated, raising the possibility that these kinases may regulate FAK activity. To explore the role of Src family kinases in focal adhesions and in the regulation of FAK activity, we isolated fibroblasts from transgenic mice that lack either pp60c-src p59fyn, or pp62c-yes. These primary fibroblasts, and those of a control mouse, were passaged numerous times and resulted in spontaneously immortalized cell lines without the addition of transforming agents. After confirming the absence of the appropriate nonreceptor tyrosine kinases in the fyc¯, srn¯ and yes¯ fibroblasts, the ability of these fibroblasts to form focal adhesions and stress fibers was assessed by immunofluorescence microscopy and found to be comparable to that of normal fibroblasts. We investigated phosphotyrosine levels in response to adhesion to fibronectin and identified the pp60src substrate p130 as the one major protein with reduced levels of tyrosine phosphorylation in the cells lacking p59fyn and pp62c-yes, and particularly in those lacking pp60c-scr. We examined FAK phosphorylation and kinase activity and found that there were no significant differences between these cells.  相似文献   

11.
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.  相似文献   

12.
Adhesion of human umbilical endothelial cells to fibronectin resulted in increased tyrosine phosphorylation of a group of proteins with molecular mass ranging from 100 to 130 kDa and of a 70 kDa protein. This pattern of tyrosine phosphorylation was also observed when endothelial cells adhered to vitronectin, collagen IV, collagen I and laminin or to culture dishes coated with antibodies directed to either βl, α3, α5, α6 or β3 integrin subunits. Increased phosphorylation of the 100–130 kDa proteins was detectable as early as 30 sec after adhesion, reached maximal level after 15 min, and remained high as long as the cells adhere to culture dishes. The 70 kDa protein was phosphorylated with a slower kinetics and its phosphorylation increased over a period of 3 h. Using specific monoclonal antibodies, the major component of the 100–130 kDa complex was identified as the focal adhesion tyrosine kinase p125FAK. The phosphorylation of the pl25FAK was also observed by inducing βl integrin clustering in rum adherent HEC, indicating that this is a primary signalling event induced by integrins. Using tyrosine kinase inhibitors, we show a direct correlation between integrin-stimulated tyrosine kinases and assembly of focal adhesions and actin fibres.  相似文献   

13.
Paxillin, a focal-adhesion-associated protein, becomes phosphorylated in response to a number of stimuli which also induce the tyrosine phosphorylation of the focal-adhesion-associated protein tyrosine kinase pp125FAK. On the basis of their colocalization and coordinate phosphorylation, paxillin is a candidate for a substrate of pp125FAK. We describe here conditions under which the phosphorylation of paxillin on tyrosine is pp125FAK dependent, supporting the hypothesis that paxillin phosphorylation is regulated by pp125FAK. pp125FAK must localize to focal adhesions and become autophosphorylated to induce paxillin phosphorylation. Phosphorylation of paxillin on tyrosine creates binding sites for the SH2 domains of Crk, Csk, and Src. We identify two sites of phosphorylation as tyrosine residues 31 and 118, each of which conforms to the Crk SH2 domain binding motif, (P)YXXP. These observations suggest that paxillin serves as an adapter protein, similar to insulin receptor substrate 1, and that pp125FAK may regulate the formation of signaling complexes by directing the phosphorylation of paxillin on tyrosine.  相似文献   

14.
Active matrix metalloproteinases and degraded collagen are observed in disease states, such as atherosclerosis. To examine whether degraded collagen fragments have distinct effects on vascular smooth muscle cells (SMC), collagenase-digested type I collagen was added to cultured human arterial SMC. After addition of collagen fragments, adherent SMC lose their focal adhesion structures and round up. Analysis of components of the focal adhesion complex demonstrates rapid cleavage of the focal adhesion kinase (pp125(FAK)), paxillin, and talin. Cleavage is suppressed by inhibitors of the proteolytic enzyme, calpain I. In vitro translated pp125(FAK) is a substrate for both calpain I- and II-mediated processing. Mapping of the proteolytic cleavage fragments of pp125(FAK) predicts a dissociation of the focal adhesion targeting (FAT) sequence and second proline-rich domain from the tyrosine kinase domain and integrin-binding sequence. Coimmunoprecipitation studies confirm that the ability of pp125(FAK) to associate with paxillin, vinculin, and p130cas is significantly reduced in SMC treated with degraded collagen fragments. Further, there is a significant reduction in the association of intact pp125(FAK) with the cytoskeletal fraction, while pp125(FAK) cleavage fragments appear in the cytoplasm in SMC treated with degraded collagen fragments. Integrin-blocking studies indicate that integrin-mediated signals are involved in degraded collagen induction of pp125(FAK) cleavage. Thus, collagen fragments induce distinct integrin signals that lead to initiation of calpain-mediated cleavage of pp125(FAK), paxillin, and talin and dissolution of the focal adhesion complex.  相似文献   

15.
Echistatin, a snake-venom RGD-containing protein, was previously shown to disrupt cell-matrix adhesion by a mechanism that involves the reduction of pp125FAK tyrosine phosphorylation levels. The aim of this study was to establish the sequence of events downstream pp125FAK dephosphorylation that could be responsible for echistatin-induced disassembly of actin cytoskeleton and focal adhesions in fibronectin-adherent B16-BL6 melanoma cells. The results obtained show that echistatin induces a decrease of both autophosphorylation and kinase activity of pp125FAK. One hour of cell exposure to echistatin caused a 39% decrease of pp125FAK Tyr397 phosphorylation and a 31% reduction of pp125FAK autophosphorylation activity as measured by immune-complex kinase assay. Furthermore, 1 h of cell treatment by echistatin produced a 63% decrease of paxillin phosphorylation, as well as a reduction in the amount of paxillin bound to pp125FAK. Immunofluorescence analysis of echistatin treated cells showed the concomitant disappearance of both paxillin and pp125FAK from focal adhesions. The reduction of paxillin phosphorylation may represent a critical step in the pathway by which disintegrins exert their biological activity, including the inhibition of experimental metastasis in vivo.  相似文献   

16.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

17.
An early signaling event during the adhesion and spreading of cells is integrin-mediated tyrosine phosphorylation of the cytoskeletal adaptor protein paxillin and the non-receptor tyrosine kinase pp125(FAK) at focal contacts. To determine the influence of surface-charge and -adsorbed adhesion proteins on this signaling pathway, paxillin phosphorylation was examined during attachment of MC3T3-E1 osteoblast-like cell onto charged and uncharged polystyrene, and on adsorbed layers of serum proteins, fibronectin (Fn), vitronectin (Vn), a mixture of Fn and Vn, and albumin. Paxillin phosphorylation was induced 2.4-fold (P < 0.05) on charged vs uncharged polystyrene only in the presence of serum proteins. Activation of paxillin via Fn or Vn alone, or in combination, resulted in significantly lower phosphorylation signals compared to whole serum (41 +/- 6.9%, P < 0.05, 45 +/- 5.9%, P < 0.05, and 76 +/- 9.8%, P < 0.075, respectively). Confocal laser microscopy confirmed increased co-localization of phosphotyrosine and paxillin at protruding lamellopodia of spreading osteoblasts on charged vs uncharged serum-pretreated polystyrene. Taken together, these data suggest that subtle differences in surface characteristics mediate effects on adhering cells via adsorbed serum proteins involving the cytoskeletal adaptor protein paxillin.  相似文献   

18.
We showed that cyclic strain (CS) of osteoblastic cells induced tyrosine phosphorylation of two homologous tyrosine kinases FAK and PYK2, and of two homologous adaptor proteins paxillin and Hic5, with similar kinetics. Immunostaining showed that all four proteins were localized to focal contacts in controls. In contrast, the dynamics of their subcellular localization observed after CS differed. While FAK and paxillin remained at the focal contact, Hic-5 and PYK2 translocated outside ventral focal contacts as early as 30 min after CS and were sequestered by the cytoskeleton. Co-immunoprecipitation showed that the association of PYK2/Hic-5 and PYK2/FAK increased with time after strain while that of paxillin and Hic-5 decreased. Altogether these results suggested that CS regulates focal contact activity in osteoblasts by modulating PYK2-containing complexes in particular by shuttling out of the focal contact the adaptor Hic-5 and favoring the anchorage of FAK within contacts.  相似文献   

19.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

20.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号