首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vibrio parahaemolyticus exists as swimmer and swarmer cells, specialized for growth in liquid and on solid environments respectively. Swarmer cells are characteristically highly elongated due to an inhibition of cell division, but still need to divide in order to proliferate and expand the colony. It is unknown how long swarmer cells divide without diminishing the population of long cells required for swarming behavior. Here we show that swarmer cells divide but the placement of the division site is cell length‐dependent; short swarmers divide at mid‐cell, while long swarmers switch to a specific non‐mid‐cell placement of the division site. Transition to non‐mid‐cell positioning of the Z‐ring is promoted by a cell length‐dependent switch in the localization‐dynamics of the division regulator MinD from a pole‐to‐pole oscillation in short swarmers to a multi‐node standing‐wave oscillation in long swarmers. Regulation of FtsZ levels restricts the number of divisions to one and SlmA ensures sufficient free FtsZ to sustain Z‐ring formation by preventing sequestration of FtsZ into division deficient clusters. By limiting the number of division‐events to one per cell at a specific non‐mid‐cell position, V. parahaemolyticus promotes the preservation of long swarmer cells and permits swarmer cell division without the need for dedifferentiation.  相似文献   

3.
Summary A new species of Chrysophyceae, Ruttnera pringsheimii, occurring in the coastal waters of India, is described in detail. The alga forms large colonies with cells embedded in amorphous mucilage. Vegetative cells globose or ellipsoid with two chromatophores and a nucleus and a few unidentified glistening globules. Reproduction by vegetative division and swarmer formation. The latter are globose, have the same structure as the vegetative cells and in addition possess two equal flagella. The swarmers settle down on the setae of some diatoms and develop into colonies. The alga, at times, discolours the water yellow when in bloom.Published with the kind permission of the Director, Government of India Central Marine Fisheries Research Institute, Mandapam Camp, S. India.  相似文献   

4.
A. Curry  R. D. Butler 《Protoplasma》1982,111(3):195-205
Summary Discophrya collini reproduces asexually through the formation of a ciliated swarmer by evaginative budding. This process is initiated by the repeated replication of a single subcortical kinetosome to form a kinetosome field. The epiplasm of the multilayered cortex covering this field becomes reduced in thickness and the whole cortex invaginates to produce an internal embryonic cavity. The kinetosomes become organised into rows, and each produces a cilium which projects into the cavity. On completion of the embryonic cavity its walls are extruded through the cavity opening to form an external ciliated swarmer connected to the parent by a thin bridge of cytoplasm. It is suggested that this evagination is induced by a rapid breakdown of supporting microtubules in the cavity wall and the subsequent hydrostatic pressure exerted by the body cytoplasm. The connecting bridge shows no specialised ultrastructural features and separation of swarmer from parent probably is achieved by the active movement of the swarmer. The cytoplasm of the swarmer is similar in structure to that of the adult cell but contains a number of primordia of tentacle axonemes. The infraciliature resembles that of other suctorian swarmers. On settling, the cilia of the swarmer are lost, at least some by resorption, a stalk may be secreted and the axoneme primordia are extended to form functional tentacles.  相似文献   

5.
Laboratory experiments were conducted to determine the effect of bacterial films on adhesion ofEnteromorpha sp. reproductive swarmer cells. Swarmers always attached in greater numbers to filmed than to unfilmed polystyrene surfaces. Surface energy measurements produced higher values on filmed surfaces than on unfilmed surfaces. Our data indicate that this higher surface energy may contribute to the increased adhesion by the algal swarmers.  相似文献   

6.
Reproductive swarmers of the polycystine radiolarian Sphaerozoum punctatum (Huxley) collected from the East China Sea were examined using light, scanning and transmission electron microscopy. The swarmer cells were about 8–10 μm in length with a pear-like shape and a conical end with two flagella. A nucleus, mitochondria, Golgi body, lipid droplets and, characteristically, a single, large, vacuole-bound SrSO4 crystal were present in the cytoplasm. Centering on the crystal inclusion, swarmers swam in a rapid rotational movement both clockwise and anticlockwise. Small subunit (SSU) rDNA sequences obtained for the reproductive swarmer cells from S. punctatum show a monophyletic group together with colonial spumellarians and grouped with S. punctatum from Bermuda in the clade. The morphological features and molecular phylogeny of the reproductive swarmers of S. punctatum show evidence of ancestral traits of radiolarians; acantharians and polycystines have a common ancestry. In addition, SrSO4 inclusion of the swarmer cell may be a form of ballast deposited by the swarmer to allow proper positioning in the water column. We hypothesize that radiolarian-affiliated sequences from SSU rDNA clone libraries of marine picoeukaryotes may be derived from the picoplanktonic cells of radiolarians; i.e., small flagellated life stages such as reproductive swarmers or gametes.  相似文献   

7.
A flavin-like green autofluorescent substance is noticed to occur in one of the flagella of flagellated cells in the Phaeophyceae, Chrysophyceae, Synurophyceae, Xanthophyceae and Prymnesiophyceae. In the phaeophycean swarmers the autofluorescence occurs in the posterior flagellum throughout its length. It is considered to be involved in the photoreception of phototaxis, since it almost always occurs in the swarmers which have a flagellar swelling and stigma and show phototaxis. In the phaeophycean swarmers, the stigma is shown to act as a concave reflector mirror focusing the reflection light onto the flagellar swelling. In the action spectrum studies, phaeophycean swarmers showed phototaxis between 370 and 520 nm, having two major peaks at 420 or 430 nm and 450 or 460 nm. Their responses were true phototactic and not photophobic. Rotation of the swarmer was shown to be essential in the photoreception ofEctocarpus gametes. Recipient of the Botanical Society Award for Young Scientists, 1991.  相似文献   

8.
In unialgal culture, Gymnodinium pseudopalustre Schiller (G.p.) and Woloszynskia apiculata sp. nov. (W.a.) multiply respectively by binary fission in the motile state and by motionless zoosporangia, releasing 2, 4 or 8 zoospores. Both species are isogamous, but G.p. is homothallic, W.a. heterothallic. Fusion of the planogametes leads to long-lived planozygotes, which retain two posterior flagella and, while enlarging, assume specific morphologies. The motile stage of the zygotes is terminated by formation of hypnozygotes (resting spores), globular and spiny in G.p., grossly fusiform (‘horned’) and tubercled in W.a. The composition of the hypnozygote walls is described. After their dormancy has been broken by a cold treatment of several weeks in the dark, hypnozygotes of both species germinate when brought back to higher temperature and light. In so doing, those of G.p. excyst one posteriorly biflagellate swarmer as a meiocyte, which, after a stage of nuclear cyclosis or, in karyological terms, zygotene through postzygotene, undergoes two steps of binary fission in the motile stage, separated by several days. In W.a., cyclosis as well as the first meiotic cell division occur inside the closed wall of the hypnozygote (now a meiocyte); thereafter either two swarmers escape and undergo the second meiotic division in a separate zoosporangium or, alternatively, second meiotic nuclear and cell divisions also take place inside the spore wall and four swarmers are finally excysted. Some aspects of dinoflagellate life cycles and taxonomic questions are discussed.  相似文献   

9.
The vegetative life cycle of Gloeodinium montanum Klebs was examined. In unialgal cultures G. montanum divided predominantly by binary fission once every 2-3 weeks. Nuclear division was followed by a delayed cytokinesis producing non-motile G. montanum cells. When placed in fresh media 2-4 biflagellated swarmers were formed. The swarmers, although similar in appearance to those of Hemidinium ochraceum Levander (1900), differ from that species in their dimensions. During vegetative reproduction swarmers developed directly into non-motile vegetative cells.  相似文献   

10.
Almost all members of the genus Salmonella differentiate and migrate on semisolid surfaces in a coordinated population behavior known as swarming. Important virulence determinants are coupled to swarmer differentiation in several other pathogenic organisms, collectively suggesting that conditions that trigger swarming in the laboratory may fortuitously promote the cells to enter a robust physiological state relevant to the host environment. Here, we present evidence that expression of two independent cell-cell signaling systems are also coupled to swarmer differentiation in S. enterica serovar Typhimurium. Expression of both pfs and sdiA genes was up-regulated in the actively migrating swarmers compared to their vegetative counterparts propagated in broth or spread plated on the surface of swim, swarm, and solid media. Accordingly, swarmers produced elevated levels of a universally recognized signaling molecule, autoinducer-2, and exhibited increased sensitivity to N-acyl homoserine lactones (AHLs), signaling molecules that Salmonella does not produce. Expression of the rck operon was concomitantly up-regulated in the swarmers in an SdiA-dependent manner only in the presence of exogenous AHLs. In addition to the previously reported adaptive antibiotic resistance phenotype and global shift in metabolism, this work presents another component of the physiological changes that are specifically associated with swarmer differentiation in serovar Typhimurium and not simply due to growth on a surface.  相似文献   

11.
This is the first report of a Ulva species reproducing asexually solely by quadriflagellate swarmers. Ulva spinulosa Okamura et Segawa specimens were collected from Ukibuchi on the Pacific coast of Kochi Prefecture, southern Japan. Quadriflagellate swarmers were released from these specimens. The swarmers showed negative phototaxis before settlement. Thalli cultured from these swarmers also released quadriflagellate swarmers in culture. Microspectrophotometric studies demonstrated equivalent DNA in nuclei of vegetative cells in thalli of U. spinulosa and in sporo‐phytes of the other Ulva species with sexual life history (U. fasciata Delile). Furthermore, the quadriflagellate swarmers of U. spinulosa had the same DNA value, demonstrating that the quadriflagellate swarmers are produced without meiosis.  相似文献   

12.
When grown in a complex peptone-yeast extract culture medium, Seliberia stellata and related morphologically similar aquatic bacterial strains typically divided asymmetrically, giving rise to a motile swarmer and a longer sessile rod. Indirect immunoferritin labeling of these bacteria, followed by incubation during which cell growth occurred, has provided evidence that antigenic cell-surface components are synthesized de novo in a sharply demarcated zone at one pole of the growing parent cells. Cell elongation occurred unidirectionally from the pole showing the de novo surface synthesis; it was this end of the elongating, helically sculptured (i.e., screw-like) rod that became the daughter swarmer cell. The daughter swarmers, produced after polar growth and division of the immunoferritinlabeled parent cells, were not labeled. The immunoferritin label remaining on the parent cell did not appear to be diluted or disturbed by the cell growth and division process. Under the cultural conditions used in this study, the growth and division events which led to production of swarmer cells in the seliberia strains examined met two major criteria of accepted definitions of budding (de novo cell surface synthesis and transverse asymmetry of division). However, the developing daughter cell was not initially narrower than the parent and thus did not increase in cell diameter during growth.In memory: R. Y. Stanier  相似文献   

13.
Most current paradigms of microbial metabolism have been derived from studying cells grown under a variety of nutrient compositions in aqueous environments. With recent advances in genomics and experimental techniques, alternative forms of bacterial growth are increasingly being explored. When propagated on nutrient-rich semi-solid media, several species of bacteria undergo a morphological differentiation into swarmers that are capable of migrating on surfaces. Recent studies indicate that swarmer differentiation represents much more than a motility phenotype, as several clinically important attributes are also co-regulated. We demonstrate that migrating swarmer cells of Salmonella are metabolically differentiated compared to the vegetative swimmer cells grown in the same nutrient environment. Furthermore, once the cells have differentiated, the swarmers remain in this physiological state under conditions that do not promote the initial differentiation. The bacterium's capacity to override some of the classic paradigms of metabolic regulation established in aqueous environments represents a unique physiological response by the pathogen that may be advantageous in polymicrobial environments such as the host.  相似文献   

14.
In many rod‐shaped bacteria, the Min system is well‐known for generating a cell‐pole to cell‐pole standing wave oscillation with a single node at mid‐cell to align cell division. In filamentous E. coli cells, the single‐node standing wave transitions into a multi‐nodal oscillation. These multi‐nodal dynamics have largely been treated simply as an interesting byproduct of artificially elongated cells. However, a recent in vivo study by Muraleedharan et al. shows how multi‐nodal Min dynamics are used to align non‐mid‐cell divisions in the elongated swarmer cells of Vibrio parahaemolyticus. The authors propose a model where the combined actions of cell‐length dependent Min dynamics, in concert with nucleoid occlusion along the cell length and regulation of FtsZ levels ensures Z ring formation and complete chromosome segregation at a single off‐center position. By limiting the number of cell division events to one per cell at an off‐center position, long swarmer cells are preserved within a multiplying population. The findings unveil an elegant mechanism of cell‐division regulation by the Min system that allows long swarmer cells to divide without the need to ‘dedifferentiate’.  相似文献   

15.

Background  

Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells.  相似文献   

16.
We observed reproductive swarmer cells of the nassellarian and spumellarian polycystine radiolarians Didymocyrtis ceratospyris, Pterocanium praetextum, Tetrapyle sp., and Triastrum aurivillii using light, scanning and transmission electron microscopy. The swarmer cells had subspherical to ovoid or spindle shapes with two unequal flagella tapered to whip-like ends. The cell size was approximately 2.5–5.5 μm long and 1.6–2.2 μm wide, which is significantly smaller than that of the collodarian (colonial or naked) polycystine radiolarians. Transmission electron microscopy revealed that the swarmer cells possessed a nucleus, mitochondria with tubular cristae, Golgi body, and small lipid droplets in the cytoplasm; they also had a large vacuole in which a single crystalline inclusion (approx. 1.0–1.5 μm) that was probably celestite (SrSO4) was enclosed. The swarmer cells were released directly from the parent cells. At that time, morphological change such as encystment was not observed in the parent cells, and the axopodia remained extended in a period of swarmer reproduction for floating existence. This may have prevented the polycystine swarmers from rapidly sinking down to great depths. Thus, we concluded that the polycystine radiolarians release the swarmer cells into the photic layer in the same way as the symbiotic acantharians.  相似文献   

17.
A. Curry  R. D. Butler 《Protoplasma》1979,100(2):125-137
Summary Discophrya collini subjected to high levels of feeding onParamecium caudatum developed giant forms in culture. These take several forms: a single enlarged cell, a giant with attached normal cells or attached giants with normals. All the cells possess functional tentacles. The giant cells show qualitative and quantitative macronuclear changes and an abnormally thickened epiplasm containing membraneous profiles and other aberrant structures. These cells contain kinetosome fields and brood pouches identical to those found during normal swarmer production. It is suggested that the giant complexes are formed by the normal production of swarmers but a failure in their release from the adult, perhaps attributable to the abnormal epiplasm, results in their subsequent metamorphosisin situ. The abnormal epiplasm could be produced by the deposition of myelin body food residues from the cytoplasm. The initial induction of gigantism itself may be related to disruption of the normal growth-division cycle similar to that experienced during natural senescence. Possible mechanisms of this disruption and differences with other suctoria are discussed.This work was supported by the J. S. Dunkerley Research Fellowship in Protozoology.  相似文献   

18.
First generation synchrony of isolated Hyphomicrobium swarmer populations   总被引:7,自引:4,他引:3  
A method is described for obtaining synchronously growing swarmer cell populations of Hyphomicrobium sp. strain B-522. This was accomplished by isolating young swarmers from random cultures by centrifugation and filtration. Cell multiplication occurred during 38% of the growth cycle in populations synchronized in this manner. Observations were made of the changes in cellular morphology which occurred during the growth cycle. Of the 14.25 h required for the doubling in cell numbers, an average of 5 h passed before the swarmer cells began to develop their hyphae. This time varied over a range of 10 h. The time interval between the beginning of hyphal development and the beginning of bud formation was 3.5 to 4.5 h. The maturation of the first buds and their separation from the mother cells were completed in 5.5 h. The duration of these steps is compared to those measured previously in agar slide cultures.  相似文献   

19.
Proteus mirabilis colonies display striking symmetry and periodicity. Based on experimental observations of cellular differentiation and group motility, a kinetic model has been developed to describe the swarmer cell differentiation-dedifferentiation cycle and the spatial evolution of swimmer and swarmer cells during Proteus mirabilis swarm colony development. A key element of the model is the age dependence of swarmer cell behaviour, in particular specifying a minimal age for motility and maximum age for septation and dedifferentiation to swimmer cells. Density thresholds for collective motility by mature swarmer cells serve to synchronize the movements of distinct swarmer cell groups and thus help provide temporal coherence to colony expansion cycles. Numerical computations show that the model fits experimental data by generating a complete swarming plus consolidation cycle period that is robust to changes in parameters which affect other aspects of swarmer cell migration and colony development. The kinetic equations underlying this model provide a different mathematical basis for a temporal oscillator from reaction-diffusion partial differential equations. The modelling shows that Proteus colony geometries arise as a consequence of macroscopic rules governing collective motility. Thus, in this case, pattern formation results from the operation of an adaptive bacterial system for spreading on solid substrates, not as an independent biological function. Kinetic models similar to this one may be applicable to periodic phenomena displayed by other biological systems with differentiated components of defined lifetimes. Received 3 July 1996; received in revised form 9 December 1996  相似文献   

20.
Summary Thalassomyces marsupii, an ellobiopsid parasite of the pelagic amphipod Parathemisto pacifica, produces biflagellate swarmers following simultaneous cleavage of the gonomere. One flagellum is directed posteriorly, the other circumferentially. The vegetative thallus is bounded by a complex pellicle and not a cell wall. Our observations suggest that Thalassomyces is a member of the achlorophyllous Dinophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号