首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.  相似文献   

2.
Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.  相似文献   

3.
Apoptin——一种特异性地促进肿瘤细胞凋亡的蛋白质   总被引:1,自引:0,他引:1  
鸡贫血病毒(CAV)的vp3基因编码的一种小蛋白质apoptin,可以通过独立于p53作用途径的、不被Bcl-2过量表达所抑制的方式,诱导肿瘤细胞或转化细胞凋亡,而对正常细胞不发挥作用.Apoptin的这些特征使其可能成为一种有效的抗肿瘤药物,apoptin诱导细胞凋亡的独特方式对于研究细胞转化机制和细胞凋亡途径也很有启发.  相似文献   

4.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.  相似文献   

5.
以新西兰雌兔为动物模型。研究妊娠期间胎盘细胞凋亡及其凋亡调控蛋白Bcl-2和Bax表达的动态变化,基因组DNA凝胶电泳实验检测到妊娠中期和晚期胎盘基因组DNA中出现典型的凋亡特征-DNA梯带,而且DNA断裂值在妊娠早、中、晚期分别为:0.14,0.49和1.43,与妊娠早期相比,妊娠中,晚期胎盘基因组DNA断裂值有显著性增加,TUNEL实验和活化caspase-3的免疫定位实验表明,在妊娠早期胎盘中存在细胞凋亡,而且在各妊娠期中细胞凋亡主要发生于合体滋养层,免疫印迹法分析表明,Bcl-2和Bax随妊娠的进行其表达量明显增加,Bax:Bcl-2比值在妊娠早、中、晚期分别为:0.89,0.91和1.25,呈增加趋势,实验结果说明,在兔正常妊娠中,胎盘合体滋养层细胞发生凋亡,且随妊娠的进行,凋亡细胞数量增多,胎盘细胞凋亡主要与细胞中Bax:Bcl-2的比例相关。  相似文献   

6.
以新西兰雌兔为动物模型,研究妊娠期间胎盘细胞凋亡及其凋亡调控蛋白Bcl-2和Bax表达的动态变化.基因组DNA凝胶电泳实验检测到妊娠中期和晚期胎盘基因组DNA中出现典型的凋亡特征——DNA梯带,而且DNA断裂值在妊娠早、中、晚期分别为:0.14、0.49和1.43,与妊娠早期相比,妊娠中、晚期胎盘基因组DNA断裂值有显著性增加.TUNEL实验和活化caspase-3的免疫定位实验表明,在妊娠早期胎盘中存在细胞凋亡,而且在各妊娠期中细胞凋亡主要发生于合体滋养层.免疫印迹法分析表明,Bcl-2和Bax随妊娠的进行其表达量明显增加,Bax∶Bcl-2比值在妊娠早、中、晚期分别为:0.89,0.91和1.25,呈增加趋势.实验结果说明,在兔正常妊娠中,胎盘合体滋养层细胞发生凋亡,且随妊娠的进行,凋亡细胞数量增多,胎盘细胞凋亡主要与细胞中Bax∶Bcl-2的比例相关.  相似文献   

7.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

8.
Abstract: Expression of the BCL-2 protein family members, BAX, BAK, BAD, BCL-xL, BCL-xS, and BCL-2, was measured (by western blotting using specific antibodies) in PC12 cells before and during apoptosis induced by either H2O2 treatment or by serum deprivation and during rescue from apoptosis by nerve growth factor (NGF). H2O2-induced apoptosis, as measured by DNA fragmentation, caused: (a) a dose-dependent increase in BAX, (b) a dose-independent increase in BAK, and (c) a dose-dependent inhibition of BAD expression. By comparison, apoptosis induced by serum deprivation resulted in a time-dependent decrease in both BAX and BAK, along with a dramatic and sudden decrease in BAD expression. However, when PC12 cells were incubated in an apoptosis-sparing medium (i.e., NGF-supplemented serum-free medium), both BAX and BAK were increased significantly, whereas BAD expression remained inhibited. BCL-xL expression was increased by H2O2 but unaffected by serum deprivation or long-term NGF treatment. Neither BCL-2 nor BCL-xS expression could be detected in PC12 cells under the experimental conditions tested. Our results show that the expression of BAX, BAK, BAD, and BCL-xL is altered in a stimulus-dependent manner but cannot be used to define whether a cell will undergo or survive apoptosis. The similarity between changes in expression of BCL-2-related proteins induced by H2O2 exposure and NGF rescue could reflect activation in part of a common antioxidant pathway.  相似文献   

9.
Calmodulin (CaM)-dependent enzymes, such as CaM-dependent phosphodiesterase (CaM-PDE), CaM-dependent protein phosphatase (CN), and CaM-dependent protein kinase II (CaM kinase II), are found in high concentrations in differentiated mammalian neurons. In order to determine whether neuroblastoma cells express these CaM-dependent enzymes as a consequence of cellular differentiation, a series of experiments was performed on human SMS-KCNR neuroblastoma cells; these cells morphologically differentiate in response to retinoic acid and phorbol esters [12-O-tetradecanoylphorbol 13-acetate (TPA)]. Using biotinylated CaM overlay procedures, immunoblotting, and protein phosphorylation assays, we found that SMS-KCNR cells expressed CN and CaM-PDE, but did not appear to have other neuronal CaM-binding proteins. Exposure to retinoic acid, TPA, or conditioned media from human HTB-14 glioma cells did not markedly alter the expression of CaM-binding proteins; 21-day treatment with retinoic acid, however, did induce expression of novel CaM-binding proteins of 74 and 76 kilodaltons. Using affinity-purified polyclonal antibodies, CaM-PDE immunoreactivity was detected as a 75-kilodalton peptide in undifferentiated cells, but as a 61-kilodalton peptide in differentiated cells. CaM kinase II activity and subunit autophosphorylation was not evident in either undifferentiated or neurite-bearing cells; however, CaM-dependent phosphatase activity was seen. Immunoblot analysis with affinity-purified antibodies against CN indicated that this enzyme was present in SMS-KCNR cells regardless of their state of differentiation. Although SMS-KCNR cells did not show a complete pattern of neuronal CaM-binding proteins, particularly because CaM kinase II activity was lacking, they may be useful models for examination of CaM-PDE and CN expression. It is possible that CaM-dependent enzymes can be used as sensitive markers for terminal neuronal differentiation.  相似文献   

10.
为了同时调节二种凋亡相关蛋白的表达诱导肿瘤细胞凋亡 ,探索肿瘤基因治疗的可能性 ,同时转入可诱导表达的特异性切割 bcl- 2的核酶基因及 bax基因 ,间接免疫荧光标记法检测 Bcl- 2及Bax蛋白的表达量 ,用 TUNEL、流式细胞术及琼脂糖凝胶电泳检测细胞凋亡 .共转染后 Bcl- 2蛋白表达下降 ,同时 Bax蛋白表达升高 ,导致 30 %左右细胞凋亡 ,并可使细胞对紫杉醇的敏感度增加近4倍 ,使紫杉醇有效作用时间缩短近一倍 .同时调节二个凋亡相关基因可导致细胞凋亡 ,并能有效促进化疗药物诱导的凋亡 .同时校正多个基因的异常表达 ,比仅仅改变单个基因可更有效地达到治疗肿瘤的目的 .  相似文献   

11.
Heat shock induces a stress response in mammalian cells and can also lead to apoptotic cell death. Here we report that a 36-kDa myelin basic protein (MBP) kinase detected by an in-gel kinase assay can be drastically activated in several cell types by heat shock. Immunoblot analysis revealed that this 36-kDa MBP kinase can be recognized by an antibody against the C-terminal region of a family of p21Cdc42/Rac-activated kinases (PAKs). By using this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 as tools, we further demonstrated that heat shock can induce cleavage of PAK2 to generate a 36-kDa C-terminal catalytic fragment in mouse Balb/c 3T3 and human Hep 3B cells. The kinetic profile of appearance of the 36-kDa C-terminal catalytic fragment of PAK2 matched exactly with the activation of the 36-kDa MBP kinase in these cells induced by heat shock. In addition, the heat shock-induced cleavage and activation of PAK2 was found to be closely associated with both DNA fragmentation and activation of an ICE/CED-3 family cysteine protease termed caspase-3 in heat shock-treated Hep 3B cells. Moreover, blockage of the activation of caspase-3 by pretreating the cells with two specific tetrapeptidic inhibitors of caspases (Ac-DEVD-cho and Ac-YVAD-cmk) could substantially diminish the extent of heat shock-induced cleavage/activation of PAK2. Overall, our results point out that PAK2 is cleaved and activated during the heat shock-induced apoptotic cell death process and suggest that caspase-3 is involved in this process.  相似文献   

12.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

13.
目的:研究5-脂氧合酶激活蛋白(FLAP)的表达抑制对乳腺癌细胞凋亡的诱导作用。方法:通过小干扰RNA(siRNA)抑制乳腺癌细胞MDA-MB-231中FLAP的表达,用流式细胞仪检测膜联蛋白(annexin)-V标记的早期凋亡细胞,用Western印迹检测细胞凋亡相关蛋白的水平。结果:转染了FLAP siRNA的乳腺癌细胞,24h后FLAP的表达被抑制,17%的细胞出现早期凋亡;48h时早期凋亡细胞增加到32.1%;72h时早期凋亡细胞下降到13.8%,而死亡或凋亡晚期细胞占到61.3%。在细胞凋亡过程中,Bcl-2水平下降,而细胞色素c、胱冬蛋白酶(caspase)-3的水平逐渐增高。结论:FLAP的表达抑制可以诱导乳腺癌细胞通过Bcl-2和胱冬蛋白酶-3途径发生凋亡。  相似文献   

14.
To investigate the role of protein kinase C (PKC) isoforms in regulation of neurite outgrowth, PKCalpha, betaII, delta, and epsilon fused to enhanced green fluorescent protein (EGFP) were transiently overexpressed in neuroblastoma cells. Overexpression of PKCepsilon-EGFP induced cell processes whereas the other isoforms did not. The effect of PKCepsilon-EGFP was not suppressed by the PKC inhibitor GF109203X. Instead, process formation was more pronounced when the regulatory domain was introduced. Overexpression of various fragments from PKCepsilon regulatory domain revealed that a region encompassing the pseudosubstrate, the two C1 domains, and parts of the V3 region were necessary and sufficient for induction of processes. By deleting the second C1 domain from this construct, a dominant-negative protein was generated which suppressed processes induced by full-length PKCepsilon and neurites induced during retinoic acid- and growth factor-induced differentiation. As with neurites in differentiated neuroblastoma cells, processes induced by the PKCepsilon- PSC1V3 protein contained alpha-tubulin, neurofilament-160, and F-actin, but the PKCepsilon-PSC1V3-induced processes lacked the synaptic markers synaptophysin and neuropeptide Y. These data suggest that PKCepsilon, through its regulatory domain, can induce immature neurite-like processes via a mechanism that appears to be of importance for neurite outgrowth during neuronal differentiation.  相似文献   

15.
The anti-neoplastic drug taxol binds to β-tubulin to prevent tumor cell division, promoting cell death. However, high dose taxol treatment may induce cell death in normal cells too. The anti-apoptotic molecule Bcl-2 is upregulated in many cancer cells to protect them from apoptosis. In the current study, we knocked down Bcl-2 expression using cognate siRNA during low-dose taxol treatment to induce apoptosis in two human glioblastoma U138MG and U251MG cell lines. The cells were treated with either 100 nM taxol or 100 nM Bcl-2 siRNA or both for 72 h. Immunofluorescent stainings for calpain and active caspase-3 showed increases in expression and co-localization of these proteases in apoptotic cells. Fluorometric assays demonstrated increases in intracellular free [Ca2+], calpain, and caspase-3 indicating augmentation of apoptosis. Western blotting demonstrated dramatic increases in the levels of Bax, Bak, tBid, active caspases, DNA fragmentation factor-40 (DFF40), cleaved fragments of lamin, fodrin, and poly(ADP-ribose) polymerase (PARP) during apoptosis. The events related to apoptosis were prominent more in combination therapy than in either treatment alone. Our current study demonstrated that Bcl-2 siRNA significantly augmented taxol mediated apoptosis in different human glioblastoma cells through induction of calpain and caspase proteolytic activities. Thus, combination of taxol and Bcl-2 siRNA offers a novel therapeutic strategy for controlling the malignant growth of human glioblastoma cells. Special issue article in honor of Dr. George DeVries.  相似文献   

16.
In this study, a neuroblastoma N2a cell line was applied to investigate mechanisms of apoptosis induced either by selective inhibition of protein kinase C (PKC) by low amounts of staurosporine (STS(10) ) or by inhibition PI3-K after wortmannin (WM) treatment. We present evidence that, in the absence of serum in the medium, decreased phosphorylation of Raf-1 and BAD112, as well as Akt and BAD136, proteins and their translocation to mitochondria coincided with STS10 - or WM-induced apoptosis, respectively. Concomitantly, release of cytochrome c into the cytosol indicated a BCL-2-dependent mode of cell death after both treatments. Furthermore, in typical 'gain of function' experiments, cells with overexpression of permanently active Raf-1 or Akt transgenes displayed a significantly higher and independent resistance to either STS10 or WM. Thus, our results indicate that PKC/Raf-1/BAD112, as well as PI3-K/Akt/BAD136 signalling pathways, are both necessary for N2a cell survival and thus are unable to functionally substitute for each other as long as the cells do not receive additional signal(s) derived from serum. However, in the presence of serum, undefined trophic signal(s) can stimulate cross-talk between these two pathways at a level upstream from Raf-1 and Akt phosphorylation. In this case, only simultaneous inhibition of PKC and PI3-K is able to induce apoptosis.  相似文献   

17.
Background and Objectives: Saussurea lappa (S. lappa) is an important species of the Asteraceae family with several purposes in traditional medicine. This study intended to explore the cytotoxic effect of S. lappa on HepG2 cancer cell proliferation. Materials and Methods: The effects of an S. lappa n-butanol extract on the induction of apoptosis were investigated by flow cytometry and mitochondrial cytochrome C-releasing apoptosis assay. Additionally, real-time PCR was employed to confirm apoptosis initiation. Further, qualitative estimation of the active constituent of S. lappa was done by gas chromatography–mass spectroscopy (GC–MS). Results: The cell viability study revealed that the n-butanol extract of S. lappa demonstrated potent cytotoxicity against HepG2 cancer cells, with an IC50 value of 56.76 μg/mL. Cell morphology with dual staining of acridine orange (AO)-ethidium bromide (EB) showed an increase in orange/red nuclei due to cell death by S. lappa n-butanol extract compared to control cells. Apoptosis, as the mode of cell death, was also confirmed by the higher release of cytochrome C from mitochondria, the increased expression of caspase-3 and bax, along with down regulation of Bcl-2. Conclusion: These findings conclude that S. lappa is a cause of hepatic cancer cell death through apoptosis and a potential natural source suggesting furthermore investigation of its active compounds that are responsible for these observed activities.  相似文献   

18.
Abstract: The effect of inhibition and down-regulation of protein kinase C (PKC) subtypes α, ε, and ζ on noradrenaline (NA) secretion from human SH-SY5Y neuroblastoma cells was investigated. The PKC inhibitor Ro 31-7549 inhibited carbachol-evoked NA release (IC50 0.6 µ M ) but not 100 m M K+-evoked release. In addition, Ro 31-7549 inhibited the enhancement of carbachol- and K+-evoked release after pretreatment with 12- O -tetradecanoylphorbol 13-acetate (TPA; 100 n M ) for 8 min, with IC50 values of 0.7 and 2.4 µ M , respectively. Immunoblotting studies showed that prolonged exposure (48 h) of SH-SY5Y cells to phorbol 12,13-dibutyrate (PDBu) or bryostatin-1 caused down-regulation of PKC-α and PKC-ε but not PKC-ζ. Under these conditions, the acute TPA enhancement of NA release was inhibited. Moreover, the inhibition of TPA-enhanced secretion was also apparent after only 2-h exposure to either PDBu or bryostatin-1, conditions that caused down-regulation of PKC-α, but not PKC-ε or ζ. The PKC inhibitor Gö-6976 (2 µ M ), which has been shown to inhibit selectively PKC-α and β in vitro, also inhibited the TPA enhancement of carbachol- and K+-evoked NA release by >50%. These data suggest that in SH-SY5Y cells, the ability of TPA to enhance carbachol- and K+-evoked NA secretion is due to activation of PKC-\ga.  相似文献   

19.
Abstract: Cross talk between two phospholipase C (PLC)-linked receptor signalings was investigated in SK-N-BE(2)C human neuroblastoma cells. Sequential stimulation with two agonists at 5-min intervals was performed to examine the interaction between muscarinic and bradykinin (BK) receptors. Pretreatment of cells with a maximal effective concentration (5 µ M ) of BK did not affect the subsequent carbachol (CCh)-induced [Ca2+]i rise, but CCh (1 m M ) pretreatment completely abolished the BK-induced [Ca2+]i rise without inhibition of BK-induced inositol 1,4,5-trisphosphate (IP3) generation. Thapsigargin (1 µ M ) pretreatment abolished the subsequent BK- and CCh-induced [Ca2+]i rise, though it did not affect agonist-induced IP3 generation. However, the addition of atropine at plateau phases of CCh-induced [Ca2+]i rise and IP3 production caused a rapid decline to the basal levels and then restored the [Ca2+]i rise by BK. Treatment of cells with both CCh and BK at the same time showed additive effects in IP3 production. However, the [Ca2+]i rise induced by both agonists in the presence or absence of extracellular Ca2+ was the same as the responses triggered by CCh alone. The results suggest that each receptor or receptor-linked PLC activity is not influenced by pretreatment with the other agonist but IP3-sensitive Ca2+ stores are shared by signal pathways from both receptors.  相似文献   

20.
Bcl-XL binds to Bax, inhibiting Bax oligomerization required for mitochondrial outer membrane permeabilization (MOMP) during apoptosis. How Bcl-XL binds to Bax in the membrane is not known. Here, we investigated the structural organization of Bcl-XL·Bax complexes formed in the MOM, including the binding interface and membrane topology, using site-specific cross-linking, compartment-specific labeling, and computational modeling. We found that one heterodimer interface is formed by a specific interaction between the Bcl-2 homology 1–3 (BH1–3) groove of Bcl-XL and the BH3 helix of Bax, as defined previously by the crystal structure of a truncated Bcl-XL protein and a Bax BH3 peptide (Protein Data Bank entry 3PL7). We also discovered a novel interface in the heterodimer formed by equivalent interactions between the helix 1 regions of Bcl-XL and Bax when their helical axes are oriented either in parallel or antiparallel. The two interfaces are located on the cytosolic side of the MOM, whereas helix 9 of Bcl-XL is embedded in the membrane together with helices 5, 6, and 9 of Bax. Formation of the helix 1·helix 1 interface partially depends on the formation of the groove·BH3 interface because point mutations in the latter interface and the addition of ABT-737, a groove-binding BH3 mimetic, blocked the formation of both interfaces. The mutations and ABT-737 also prevented Bcl-XL from inhibiting Bax oligomerization and subsequent MOMP, suggesting that the structural organization in which interactions at both interfaces contribute to the overall stability and functionality of the complex represents antiapoptotic Bcl-XL·Bax complexes in the MOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号