首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Methods

It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood’s complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates.

Results

Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection.

Conclusions/Significance

These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers.  相似文献   

2.

Objective  

Observations of microcirculation reveal that the blood flow is subject to interruptions and resumptions. Accepting that blood randomly stops and resumes, one can show that the randomness could be a powerful means to match oxygen delivery with oxygen demand.  相似文献   

3.

Background  

The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate.  相似文献   

4.

Background  

Cell proliferation and apoptosis are both involved in arterial wall remodeling. Increase in blood flow induces arterial enlargement. The molecular basis of flow-induced remodeling in large elastic arteries is largely unknown.  相似文献   

5.

Introduction  

The aim of the present study was to determine the brain areas associated with fibromyalgia, and whether pretreatment regional cerebral blood flow (rCBF) can predict response to gabapentin treatment.  相似文献   

6.

Introduction  

Laser Doppler imaging (LDI) is a relatively new method for assessing the functional aspect of superficial skin blood flow in systemic sclerosis (SSc) and Raynaud's phenomenon. The present study investigated the dynamic behavior of digital skin microvascular blood flow before and after cold stimulus (CS) in SSc patients and in healthy controls by means of a comprehensive approach of the functional (LDI), morphological (nailfold capillaroscopy (NFC)), and biochemical (fingertip lacticemy (FTL)) microcirculation components.  相似文献   

7.

Background  

This simulation study investigated potential modulations of total peripheral resistance (TPR), due to distributed peripheral vascular activity, by means of a lumped model of the arterial tree and a non linear model of microcirculation, inclusive of local controls of blood flow and tissue-capillary fluid exchange.  相似文献   

8.

Background  

For blood purification systems using a semipermeable membrane, the convective mass transfer by ultrafiltration plays an important role in toxin removal. The increase in the ultrafiltration rate can improve the toxin removal efficiency of the device, ultimately reducing treatment time and cost. In this study, we assessed the effects of pulsatile flow on the efficiency of the convective toxin removal in blood purification systems using theoretical methods.  相似文献   

9.

Background  

Maintenance of ovarian blood flow (OBF) is suggested to be important for regular ovulation in women with polycystic ovaries (PCO). The purpose of the present study was to investigate whether electro-acupuncture (EA) of different frequencies and intensities can improve the OBF of anaesthetized rat in the animal model of PCO.  相似文献   

10.

Background  

A computational model of myocardial energy metabolism was used to assess the metabolic responses to normal and reduced myocardial blood flow. The goal was to examine to what extent glycolysis and lactate formation are controlled by the supply of glycolytic substrate and/or the cellular redox (NADH/NAD+) and phosphorylation (ATP/ADP) states.  相似文献   

11.

Introduction  

The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation.  相似文献   

12.

Background  

The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.  相似文献   

13.

Background  

Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.  相似文献   

14.

Background  

Estradiol valerate (EV)-induced polycystic ovaries (PCO) in rats is associated with an increase in ovarian sympathetic outflow. Low-frequency (2 Hz) electro-acupuncture (EA) has been shown to modulate sympathetic markers as well as ovarian blood flow as a reflex response via the ovarian sympathetic nerves, in rats with EV-induced PCO.  相似文献   

15.
Wang  Yuchen  Zhan  Jingmei  Bian  Weiguo  Tang  Xiaoli  Zeng  Min 《Journal of biological physics》2021,47(2):143-170

Coronary stents are deployed to treat the coronary artery disease (CAD) by reopening stenotic regions in arteries to restore blood flow, but the risk of the in-stent restenosis (ISR) is high after stent implantation. One of the reasons is that stent implantation induces changes in local hemodynamic environment, so it is of vital importance to study the blood flow in stented arteries. Based on regarding the red blood cell (RBC) as a rigid solid particle and regarding the blood (including RBCs and plasma) as particle suspensions, a non-Newtonian particle suspensions model is proposed to simulate the realistic blood flow in this work. It considers the blood’s flow pattern and non-Newtonian characteristic, the blood cell-cell interactions, and the additional effects owing to the bi-concave shape and rotation of the RBC. Then, it is compared with other four common hemodynamic models (Newtonian single-phase flow model, Newtonian Eulerian two-phase flow model, non-Newtonian single-phase flow model, non-Newtonian Eulerian two-phase flow model), and the comparison results indicate that the models with the non-Newtonian characteristic are more suitable to describe the realistic blood flow. Afterwards, based on the non-Newtonian particle suspensions model, the local hemodynamic environment in stented arteries is investigated. The result shows that the stent strut protrusion into the flow stream would be likely to produce the flow stagnation zone. And the stent implantation can make the pressure gradient distribution uneven. Besides, the wall shear stress (WSS) of the region adjacent to every stent strut is lower than 0.5 Pa, and along the flow direction, the low-WSS zone near the strut behind is larger than that near the front strut. What’s more, in the regions near the struts in the proximal of the stent, the RBC particle stagnation zone is easy to be formed, and the erosion and deposition of RBCs are prone to occur. These hemodynamic analyses illustrate that the risk of ISR is high in the regions adjacent to the struts in the proximal and the distal ends of the stent when compared with struts in other positions of the stent. So the research can provide a suggestion on the stent design, which indicates that the strut structure in these positions of a stent should be optimized further.

  相似文献   

16.

Background  

Mild cognitive impairment (MCI) was recently described as a heterogeneous group with a variety of clinical outcomes and high risk to develop Alzheimer's disease (AD). Regional cerebral blood flow (rCBF) as measured by single photon emission computed tomography (SPECT) was used to study the heterogeneity of MCI and to look for predictors of future development of AD.  相似文献   

17.

Background  

It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC).  相似文献   

18.
19.

Background  

This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture.  相似文献   

20.

Background  

Many cardiovascular diseases, such as aortic dissection, frequently occur on the aortic arch and fluid-structure interactions play an important role in the cardiovascular system. Mechanical stress is crucial in the functioning of the cardiovascular system; therefore, stress analysis is a useful tool for understanding vascular pathophysiology. The present study is concerned with the stress distribution in a layered aortic arch model with interaction between pulsatile flow and the wall of the blood vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号