首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild-type p53 triggers two distinct biological responses, cell cycle arrest and apoptosis. Several small DNA tumor viruses encode proteins that bind p53 and thus block the function of p53. This probably reflects the need of these viruses to prevent p53-induced cell cycle arrest and apoptosis to allow viral DNA replication. Unlike SV40 large T, polyoma virus large T does not bind p53, and it is still unclear how polyoma virus blocks p53 function. To address this question, we transfected polyoma virus middle T or small t alone or middle T and small t together into J3D mouse T-lymphoma cells carrying temperature-sensitive p53 (ts p53). Induction of wild-type p53 by temperature shift to 32 degrees C triggered both G1 cell cycle arrest and apoptosis in parental J3D-ts p53 cells. In contrast, J3D-ts p53 cells coexpressing middle T and small t showed only a weak G1 cell cycle arrest response after induction of wild-type p53 at 32 degrees C. Fluorescence-activated cell sorter analysis revealed that nearly half of the middle T-expressing cells, 30% of the small t-expressing cells, and a majority of the cells coexpressing middle T and small t were resistant to p53-induced apoptosis. The phosphatidylinositol 3-kinase inhibitor wortmannin partially abrogated the protective effect of middle T but not small t on p53-induced apoptosis, indicating that middle T prevents p53-induced apoptosis through the phosphatidylinositol 3-kinase signal transduction pathway. Our results thus establish a mechanism for polyoma virus-mediated inhibition of p53 function.  相似文献   

2.
A temperature-sensitive (ts) mutant, designated tsFT210, was isolated from a mouse mammary carcinoma cell line, FM3A. The tsFT210 cells grew normally at 33 degrees C (permissive temperature), but more than 80% of the cells were arrested at the G2 phase at 39 degrees C (non-permissive temperature) as revealed by flow-microfluorimetric analysis. DNA replication and synthesis of other macromolecules by this mutant seemed to be normal at 39 degrees C for at least 10 h. However, in this mutant, hyperphosphorylation of H1 histone from the G2 to M phase, which occurs in the normal cell cycle, could not be detected at the non-permissive temperature. This suggests that a gene product which is temperature-sensitive in tsFT210 cells is necessary for hyperphosphorylation of H1 histone and that this gene product may be related to chromosome condensation.  相似文献   

3.
Murine erythroleukemia cells that lack endogenous p53 expression were transfected with a temperature-sensitive p53 allele. The temperature-sensitive p53 protein behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. Three independent clones expressing the temperature-sensitive p53 protein were characterized with respect to p53-mediated G1 cell cycle arrest, apoptosis, and differentiation. Clone ts5.203 responded to p53 activation at 32 degrees C by undergoing G1 arrest, apoptosis, and differentiation. Apoptosis was seen in cells representative of all phases of the cell cycle and was not restricted to cells arrested in G1. The addition of a cytokine (erythropoietin, c-kit ligand, or interleukin-3) to the culture medium of ts5.203 cells blocked p53-mediated apoptosis and differentiation but not p53-mediated G1 arrest. These observations indicate that apoptosis and G1 arrest can be effectively uncoupled through the action of cytokines acting as survival factors and are consistent with the idea that apoptosis and G1 arrest represent separate functions of p53. Clones ts15.15 and tsCB3.4 responded to p53 activation at 32 degrees C by undergoing G1 arrest but not apoptosis. We demonstrate that tsCB3.4 secretes a factor with erythropoietin-like activity and that ts15.15 secretes a factor with interleukin-3 activity and suggest that autocrine secretion of these cytokines blocks p53-mediated apoptosis. These data provide a framework in which to understand the variable responses of cells to p53 overexpression.  相似文献   

4.
Autographa californica nuclear polyhedrosis virus (AcMNPV) mutants that lack the apoptotic suppressor gene p35 cause apoptosis in Spodoptera frugiperda SF21 cells. To identify a viral signal(s) that induces programmed cell death, we first defined the timing of apoptotic events during infection. Activation of a P35-inhibitable caspase, intracellular fragmentation of host and AcMNPV DNA, and cell membrane blebbing coincided with the initiation of viral DNA synthesis between 9 and 12 h after infection and thus suggested that apoptotic signaling begins at or before this time. Virus entry was required since binding of budded virus to host cell receptors alone was insufficient to induce apoptosis. To therefore determine the contribution of early and late replication events to apoptotic signaling, we used the AcMNPV mutant ts8 with a temperature-sensitive lesion in the putative helicase gene p143. At the nonpermissive temperature at which viral DNA synthesis was conditionally blocked, ts8 caused extensive apoptosis of the SF21 cell line p3576D, which dominantly interferes with anti-apoptotic function of viral P35. Confirming that apoptosis can be induced in the absence of normal viral DNA synthesis, parental SF21 cells also underwent apoptosis when infected with a ts8 p35 deletion mutant at the nonpermissive temperature. However, maximum levels of ts8 p35 deletion mutant-induced apoptosis required a temperature-sensitive event(s) that included the initiation of viral DNA synthesis. Collectively, these data suggested that baculovirus-induced apoptosis can be triggered by distinct early (pre-DNA synthesis) and late replicative events, including viral DNA synthesis or late gene expression.  相似文献   

5.
Deoxyribonucleic acid (DNA) synthesis was examined in asynchronous and synchronous cultures of a number of cdc (cell division cycle) temperature-sensitive mutant strains. The kinetics of DNA synthesis after a shift to the restrictive temperature was compared with that obtained after inhibition of protein synthesis at the permissive temperature, a condition that specifically blocks the initiation of new rounds of DNA replication, but does not block those in progress. Mutations in three genes (cdc 4, 7, and 28) appear to block a precondition for DNA synthesis since cells carrying these lesions cannot start new rounds of DNA replication after a shift from permissive to restrictive temperature, but can finish rounds that were in progress. These three genes are classified as having roles in the "initiation" of DNA synthesis. Mutations in two genes (cdc 8 and 21) block DNA synthesis, itself, since cells harboring these lesions that had started DNA synthesis at the permissive temperature arrest synthesis abruptly upon a shift to the restrictive temperature. Mutations in 13 other cdc genes do not impair DNA synthesis in the first cell cycle at the restrictive temperature.  相似文献   

6.
A large number of mutants that are temperature sensitive (ts) for growth have been isolated from mouse mammary carcinoma FM3A cells by an improved selection method consisting of cell synchronization and short exposures to restrictive temperature. The improved method increased the efficiency of isolating DNA ts mutants, which showed a rapid decrease in DNA-synthesizing ability after temperature shift-up. Sixteen mutants isolated by this and other methods were selected for this study. Flow microfluorometric analysis of these mutants cultured at a nonpermissive temperature (39 degrees C) for 16 h indicated that five clones were arrested in the G1 to S phase of the cell cycle, six clones were in the S to G2 phase, and two clones were arrested in the G2 phase. The remaining three clones exhibited 8C DNA content after incubation at 39 degrees C for 28 h, indicating defects in mitosis or cytokinesis. These mutants were classified into 11 complementation groups. All the mutants except for those arrested in the G2 phase and those exhibiting defects in mitosis or cytokinesis showed a rapid decrease in DNA synthesis after temperature shift-up without a decrease in RNA and protein synthesis. The polyomavirus DNA cell-free replication system, which consists of polyomavirus large tumor antigen and mouse cell extracts, was used for further characterization of these DNA ts mutants. Among these ts mutants, only the tsFT20 strain, which contains heat-labile DNA polymerase alpha, was unable to support the polyomavirus DNA replication. Analysis by DNA fiber autoradiography revealed that DNA chain elongation rates of these DNA ts mutants were not changed and that the initiation of DNA replication at the origin of replicons was impaired in the mutant cells.  相似文献   

7.
8.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

9.
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.  相似文献   

10.
The fission yeast Hsk1p kinase is an essential activator of DNA replication. Here we report the isolation and characterization of a novel mutant allele of the gene. Consistent with its role in the initiation of DNA synthesis, hsk1(ts) genetically interacts with several S-phase mutants. At the restrictive temperature, hsk1(ts) cells suffer abnormal S phase and loss of nuclear integrity and are sensitive to both DNA-damaging agents and replication arrest. Interestingly, hsk1(ts) mutants released to the restrictive temperature after early S-phase arrest in hydroxyurea (HU) are able to complete bulk DNA synthesis but they nevertheless undergo an abnormal mitosis. These findings indicate a second role for hsk1 subsequent to HU arrest. Consistent with a later S-phase role, hsk1(ts) is synthetically lethal with Deltarqh1 (RecQ helicase) or rad21ts (cohesin) mutants and suppressed by Deltacds1 (RAD53 kinase) mutants. We demonstrate that Hsk1p undergoes Cds1p-dependent phosphorylation in response to HU and that it is a direct substrate of purified Cds1p kinase in vitro. These results indicate that the Hsk1p kinase is a potential target of Cds1p regulation and that its activity is required after replication initiation for normal mitosis.  相似文献   

11.
A temperature-sensitive mutant defective in DNA replication, tsFT848, was isolated from the mouse mammary carcinoma cell line FM3A. In mutant cells, the DNA-dependent ATPase activity of DNA helicase B, which is a major DNA-dependent ATPase in wild-type cells, decreased at the nonpermissive temperature of 39 degrees C. DNA synthesis in tsFT848 cells at the nonpermissive temperature was analyzed in detail. DNA synthesis measured by incorporation of [3H]thymidine decreased to about 50% and less than 10% of the initial level at 8 and 12 h, respectively. The decrease in the level of thymidine incorporation correlated with a decrease in the number of silver grains in individual nuclei but not with the number of cells with labeled nuclei. DNA fiber autoradiography revealed that the DNA chain elongation rate did not decrease even after an incubation for 10 h at 39 degrees C, suggesting that initiation of DNA replication at the origin of replicons is impaired in the mutant cells. The decrease in DNA-synthesizing ability coincided with a decrease in the level of the DNA-dependent ATPase activity of DNA helicase B. Partially purified DNA helicase B from tsFT848 cells was more heat sensitive than that from wild-type cells. Inactivation of DNA-dependent ATPase activity of DNA helicase B from mutant cells was considerably reduced by adding DNA to the medium used for preincubation, indicating that the DNA helicase of mutant cells is stabilized by binding to DNA.  相似文献   

12.
DNA repair is activated in early stages of p53-induced apoptosis   总被引:3,自引:0,他引:3  
p53 is a complex molecule involved in apoptosis, cell cycle arrest, and DNA repair. Since apoptosis may play an important role in deletion of neoplastic cells, an understanding of the mechanism of p53-induced apoptosis may be critical for possible future therapeutic interventions. Recent evidence suggests that p53-induced apoptosis may involve members of the nucleotide excision repair (NER) family, linking these two cellular events. Our work using a temperature-sensitive p53 construct further analyzes p53-induced apoptosis in cultured murine mammary epithelial cells and also suggests that DNA repair plays a role in that process. Although p21 is induced in our system, apoptosis occurs without a detectable preceding G1 cell cycle arrest and independent of cellular alterations brought on by the temperature shift. In addition, clonogenic assays suggest that early stages of p53-induced apoptosis may be reversible upon removal of the apoptosis stimulus. As a possible explanation for this reversibility, our results show that general DNA repair activity increases early in p53-induced apoptosis. We also show that caspase-3 is activated at a timepoint when colony formation begins to drop, suggesting a possible mechanism for the point of no return in p53-induced apoptosis.  相似文献   

13.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

14.
In this study we investigated the function of p53 as a regulator of cell cycle progression in cycling and senescent cells. Using the conditional temperature-sensitive (ts) mutant we could prevent the detrimental effect of constitutive expression of high levels of wt p53 protein. High levels of wt p53 inhibited cell proliferation by blocking the cells to progress from G1 to S phase of the cell cycle. Flow cytometric analysis revelaed a maintenance of G1 cell population for a longer time depending on the prolonged expression of wt p53 protein. The p53 mediated inhibition of cell proliferation and of the cycle was reversible. However, a spontaneous increase of wt p53 occurring in ageing normal human MRC-5 fibroblasts was associated with irreversible reduction of proliferative potential. The accumulation of G1 cells was detected by flow cytometry. By the measurement of DNA content it is not possible to discriminate between cells arrested in G1 and G0 phase, therefore, the expression of G1 markers was determined. Analysis of the expression of distinct cell cycle regulators revealed that quiescent MRC-5 cells were in G0 phase. Our results indicate that cell cycle arrest occurring in senescent cells is associated with the G0 transition.  相似文献   

15.
p53-mediated cell death: relationship to cell cycle control.   总被引:35,自引:8,他引:27       下载免费PDF全文
M1 clone S6 myeloid leukemic cells do not express detectable p53 protein. When stably transfected with a temperature-sensitive mutant of p53, these cells undergo rapid cell death upon induction of wild-type (wt) p53 activity at the permissive temperature. This process has features of apoptosis. In a number of other cell systems, wt p53 activation has been shown to induce a growth arrest. Yet, wt 53 fails to induce a measurable growth arrest in M1 cells, and cell cycle progression proceeds while viability is being lost. There exists, however, a relationship between the cell cycle and p53-mediated death, and cells in G1 appear to be preferentially susceptible to the death-inducing activity of wt p53. In addition, p53-mediated M1 cell death can be inhibited by interleukin-6. The effect of the cytokine is specific to p53-mediated death, since apoptosis elicited by serum deprivation is refractory to interleukin-6. Our data imply that p53-mediated cell death is not dependent on the induction of a growth arrest but rather may result from mutually incompatible growth-regulatory signals.  相似文献   

16.
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.  相似文献   

17.
The p53 tumor suppressor responds to chemotherapeutic stress by triggering apoptosis or eliciting pro-survival pathway through arresting cell cycle progression for DNA damage repair. Here we examined the pro-survival activity of p53 on the adriamycin-induced stress using H1299 cells stably expressing tsp53 V143A, a temperature-sensitive mutant activating only the subset of p53 target genes related to growth arrest and DNA repair, but not apoptosis. At 38 degrees C, cells evaded from adriamycin-induced G2 arrest and died of apoptosis and mitotic catastrophe, which could be inhibited by Cdk inhibitors. Activation of functional tsp53 V143A at 32 degrees C led to suppression of Cdk1/2 activities and Cyclin B1/Cdk1 expression, cells exhibited prolonged G2 arrest, regained reproductive potential and were protected from mitotic catastrophe induced by adriamycin. Inhibition of mitotic catastrophe and Cyclin B1/Cdk1 expression was ablated upon silencing p21 Waf1 expression in tsp53 V143A-H1299 cells or in HCT116 cells. Together we show that p21 Waf1 is a key component of G2 checkpoint necessary and sufficient for protecting tumor cells against adriamycin-induced mitotic catastrophe.  相似文献   

18.
tsFT20 cells, which have temperature-sensitive DNA polymerase alpha-activity, were characterized mainly at the cellular level. The cells lost their ability to synthesize DNA immediately after a shift to non-permissive temperature. The extent of decrease in the activity of DNA polymerase alpha in whole-cell extracts was the same as that of the decrease in the DNA replication ability determined by [3H]thymidine incorporation. At 39 degrees C, tsFT20 cells lost most of their colony-forming ability in one doubling time (16 h). The cells could not grow at higher than 38 degrees C, but could grow at 37 degrees C. When tsFT20 cells were synchronized at the G1/S boundary and incubated at 39 degrees C, they could not complete the S phase, ceasing cell cycle progression in mid-S phase. A temperature shift (33 degrees C----39 degrees C) experiment indicated that the whole S phase was temperature-sensitive, whereas the G2 and M phases were not. These results confirmed that DNA polymerase alpha plays a key role in DNA replication in mammalian cells.  相似文献   

19.
tsFT20 cells derived from a mouse mammary carcinoma cell line FM3A have temperature-sensitive DNA polymerase alpha activity (Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1761-1765). DNA replication in tsFT20 cells at the restrictive temperature (39 degrees C) has been characterized in detail. DNA-synthesizing ability of these cells was measured by [3H] thymidine incorporation and autoradiography. The incorporation of [3H]thymidine decreased rapidly after temperature shift-up, and the incorporation was less than 20% of the initial level after 4 h at 39 degrees C. The rapid decrease correlated well with the decrease in the grain number in the individual nucleus but not with the number of cells with labeled nuclei. Alkaline sucrose gradient sedimentation analysis and DNA fiber autoradiography revealed that DNA chain elongation proceeded normally within a replicon in the temperature-sensitive cells incubated at the restrictive temperature and the DNA elongation rate did not change during the incubation at the restrictive temperature up to at least 6 h. On the other hand, the maturation of replicon-sized DNA to higher molecular weight DNA was retarded or inhibited in the temperature-sensitive cells at the restrictive temperature. The analysis of the center to center distance between replicons by DNA fiber autoradiography revealed that the frequency of replicon initiation decreased in tsFT20 cells at 39 degrees C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号