共查询到20条相似文献,搜索用时 15 毫秒
1.
Lawrence P. Fernando Zafar U. Khan Ruth M. McKernan Angel L. De Blas 《Journal of neurochemistry》1995,64(3):1305-1311
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA ) receptor (γ2 IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2 IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA /benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions. 相似文献
2.
M. R. Witt S. E. Westh-Hansen P. Baad Rasmussen S. Hastrup M. Nielsen 《Journal of neurochemistry》1996,67(5):2141-2145
Abstract: It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (αxβyγ2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10?4M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (>200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the α3β2γ2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to α1βxγ2 and α2βxγ2 receptor combinations were observed, and weak effects (130% of control values) were detected using the α5β2γ2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an α1β2γ2 receptor combination was used. Given the heterogeneity of the GABAA/benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels. 相似文献
3.
Anthony S. Basile Sergio H. Gammal E. Anthony Jones Phil Skolnick 《Journal of neurochemistry》1989,53(4):1057-1063
The involvement of the gamma-aminobutyric acidA (GABAA) receptor complex in the pathogenesis of hepatic encephalopathy was examined in thioacetamide-treated rats with fulminant hepatic failure. Partially purified extracts from encephalopathic rat brain were approximately three times more potent in inhibiting [3H]Ro 15-1788 binding to benzodiazepine receptors than identically prepared extracts from control rats. High levels of inhibitory activity were also found in extracts of plasma, heart, and liver from thioacetamide-treated rats. The inhibition of [3H]Ro 15-1788 binding by brain extracts appeared to be competitive and reversible and was unaffected by treatment with either proteolytic enzymes or boiling. Further, GABA significantly enhanced the potency of these extracts in inhibiting [3H]flunitrazepam binding. In contrast, no differences were found in radioligand binding to the constituent recognition sites of the GABAA receptor complex in well-washed brain membranes prepared from control and encephalopathic animals. These findings suggest that the recognition-site qualities of the constituent proteins of the GABAA receptor complex are unchanged in an experimental model of hepatic encephalopathy. However, significant elevations in the level of a substance or substances with neurochemical properties characteristic of a benzodiazepine receptor agonist may contribute to the electrophysiological and behavioral manifestations of hepatic encephalopathy. 相似文献
4.
Antibodies Recognising the GABAA /Benzodiazepine Receptor Including Its Regulatory Sites 总被引:3,自引:4,他引:3
F. Anne Stephenson Stefano O. Casalotti Cleanthi Mamalaki Eric A. Barnard 《Journal of neurochemistry》1986,46(3):854-861
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators. 相似文献
5.
Abstract: Three novel antisera to the γ2 subunit of the γ-aminobutyric acidA (GABAA) receptor/benzodiazepine receptor (GABAAR/BZDR) complex have been made. Anti-γ2S and anti-γ2L are specific antibodies to synthetic peptides that recognize the γ2S (short) and γ2L (long) forms, respectively, of the γ2 subunit. An antibody (anti-γ2IL2) to staphylococcal protein A fusion protein of the large intracellular loop (γ2IL) located between the putative transmembrane segments M3 and M4 of γ2S recognizes both γ2S and γ2L subunits. The antibodies immunoprecipitated both the solubilized and affinity-purified GABAAR/BZDR from rat and bovine brain. Immunoblots with membranes from rat brain cerebral cortex as well as with affinity-purified receptor from bovine cortex show that anti-γ2S and anti-γ2L recognize peptides of 45,000 and 47,000 Mr, respectively. Immunoprecipitation experiments indicate that γ2S is more prevalent in hippocampus, whereas γ2L is more abundant in cerebellum. Intermediate values for each form are found in the cerebral cortex. The results suggest that in the rat brain there is a considerable amount of colocalization of γ2S and γ2L in the same receptor complex. In the cerebral cortex, 15% of the BZDRs contain both γ2S and γ2L subunits and 41–48% of the γ2L subunit coexists with γ2S in the same receptor complex. In cerebellum, in 27% of the clonazepam-sensitive and 39% of the clonazepam-insensitive BZDRs the γ2S and γ2L coexist in the same receptor complex. The latter are presumably localized in granule cells and also contain α6. In addition, almost all (93%) the clonazepam-insensitive BZDRs that contain γ2L also contain a γ2S subunit in the same receptor complex. The most likely interpretation of the results is that there is an important population of granule cell receptors that contain α6, γ2S, and γ2L coexisting in the same receptor complex. Nevertheless, 31% of the cerebellar receptors that contain α6 subunit(s) have neither γ2S nor γ2L subunits. There are also species differences with respect to the relative abundance of γ2S and γ2L. These results might be relevant for understanding the molecular mechanisms underlying some of the GABAAR/BZDR-mediated effects of ethanol intoxication involving cerebellar granule cells. 相似文献
6.
† Michael O. Poulter †Lillith Ohannesian Yves Larmet Paul Feltz 《Journal of neurochemistry》1997,68(2):631-639
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity. 相似文献
7.
Penelope J. Noble Shelagh M. P. Anderson Rosemarie J. De Souza Alan J. Cross F. Anne Stephenson 《Journal of neurochemistry》1993,61(2):752-755
Abstract: A previous report has described the presence of f-[35 S]- butylbicyclophosphorothionate binding sites and GABA-gated CI flux in the human neuroblastoma IMR-32 cell line. We now report the further characterisation of this binding site and, even more important, the identification of the GABAA receptor α3 subunit expressed in these cells. Cell membranes prepared from IMR-32 cells were screened by immunoblotting for reactivity with various GABAA receptor a subunit-specific antibodies. Of these, only anti-Cys α3 454-467 antibodies recognised specifically and in a dose-dependent manner an immunoreactive band. This Mr 58,000 immunoreactive species and the N -deglycosylated derivatives were both coincident with the respective homologues found in both calf cerebral cortex membranes and purified receptor preparations. This is the first report of the identification of a specific GABAA receptor subunit expressed in a human cell line, and it therefore provides a convenient model for the study of receptor structure and regulation. 相似文献
8.
Pascale Montpied Brian M. Martin Sandra L. Cottingham Barbara K. Stubblefield Edward I. Ginns Steven M. Paul 《Journal of neurochemistry》1988,51(5):1651-1654
A human cDNA clone containing the 5' coding region of the GABAA/benzodiazepine receptor alpha subunit was used to quantify and visualize receptor mRNA in various regions of the rat brain. Using a [32P]CTP-labelled antisense RNA probe (860 bases) prepared from the alpha subunit cDNA, multiple mRNA species were detected in Northern blots using total and poly A rat brain RNA. In all brain regions, mRNAs of 4.4 and 4.8 kb were observed, and an additional mRNA of 3.0 kb was detected in the cerebellum and hippocampus. The level of GABAA/benzodiazepine receptor mRNA was highest in the cerebellum followed by the thalamus = frontal cortex = hippocampus = parietal cortex = hypothalamus much greater than pons = striatum = medulla. In situ hybridization revealed high levels of alpha subunit mRNA in cerebellar gray matter, olfactory bulb, thalamus, hippocampus/dentate gyrus, and the arcuate nucleus of the hypothalamus. These data suggest the presence of multiple GABAA/benzodiazepine receptor alpha subunit mRNAs in rat brain and demonstrate the feasibility of studying the expression of genes encoding the GABAA/benzodiazepine receptor after pharmacological and/or environmental manipulation. 相似文献
9.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk− cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3 H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3 H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance. 相似文献
10.
Zafar U. Khan Lawrence P. Fernando Pablo Escribá Xavier Busquets Jacques Mallet Celia P. Miralles Michael Filla Angel L. De Blas 《Journal of neurochemistry》1993,60(3):961-971
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors. 相似文献
11.
Stephen J. Kish Kathleen S. Shannak Thomas L. Perry ‡ Oleh Hornykiewicz† 《Journal of neurochemistry》1983,41(5):1495-1497
Alterations in one subunit of the proposed GABA receptor complex, namely, the GABA receptor, have been observed in Huntington's disease cerebellum. We measured binding to a second subunit, the benzodiazepine binding site, in the autopsied cerebellum of 12 patients dying with adult-onset Huntington's disease. Neuronal benzodiazepine ([3H]flunitrazepam) binding density (Bmax) and affinity in cerebellar cortex of the Huntington's disease patients were not significantly different from control values. Similarly, maximal GABA stimulation of benzodiazepine binding was normal in the Huntington's disease cerebellum. In addition, no significant changes were observed in the concentrations of GABA, glutamate, and taurine in cerebellar cortex, nor of GABA in the dentate nucleus. 相似文献
12.
In Vitro Modulation by Avermectin B1 a of the GABA/Benzodiazepine Receptor Complex of Rat Cerebellum 总被引:1,自引:0,他引:1
Avermectin B1a, a macrocyclic lactone anthelmintic agent, causes a concentration-dependent increase of [3H]flunitrazepam binding to membranes from rat cerebellum by increasing the affinity and the number of binding sites. This effect appears to be independent of the concentration of chloride ions. The effects of avermectin B1a occur with high affinity (EC50 = 70 nM), and they persist after washing of the membranes with drug-free buffer. Pretreatment of the membranes with Triton X-100 completely abolishes the action of avermectin B1a. GABA and the GABA-mimetic compounds piperidine-4-sulfonic acid and THIP diminish the effects of avermectin B1a on benzodiazepine receptor binding in a bicuculline-methiodide-sensitive mode. In addition, the stimulation of [3H]flunitrazepam binding by avermectin B1a is decreased by the pyrazolopyridines etazolate and cartazolate. These observations suggest that avermectin B1a stimulates benzodiazepine receptor binding by acting on a modulatory site which is independent of the GABA recognition site and of the drug receptor for the pyrazolopyridines, but which is in functional interaction with these sites. 相似文献
13.
GABAA Receptors Containing the α4-Subunit: Prevalence, Distribution, Pharmacology, and Subunit Architecture In Situ 总被引:1,自引:0,他引:1
Abstract: Recombinant GABAA receptors, expressed from α-, β-, and γ2-subunits, are diazepam-insensitive when the α-subunit is either α4 or α6. In situ, diazepam-insensitive receptors containing the α6-subunit are almost exclusively expressed in the granule cell layer of the cerebellum. However, diazepam-insensitive receptors are also expressed in forebrain areas. Here, we report on the presence of diazepam-insensitive GABAA receptors in various brain areas containing the α4-subunit. GABAA receptors immunoprecipitated with a newly developed α4-subunit-specific antiserum displayed a drug binding profile that was indistinguishable from those of α4β2γ2-recombinant receptors and diazepam-insensitive [3 H]Ro 15-4513 binding sites in rat brain membranes. In addition, α4-subunit containing receptors and forebrain diazepam-insensitive receptors are present at comparably low abundance in rat brain and exhibit virtually identical patterns of distribution. Analysis of the subunit architecture of α4-subunit containing receptors revealed that the α4-subunit contributes to several receptor subtypes. Depending on the brain region, the α4-subunit can be coassembled with a second type of α4-subunit variant being α1, α2, or α3. The data demonstrate that native receptors containing the α4-subunit are structurally heterogeneous, expressed at very low abundance in the brain, and display the drug binding profile of diazepam-insensitive [3 H]Ro 15-4513 binding sites. Pharmacologically, these receptors may contribute to the actions of nonclassical ligands such as Ro 15-4513 and bretazenil. 相似文献
14.
Abstract: Two GABAA receptor subunit-specific antibodies anti-α6 and anti-α1 have been used for elucidating the relationship between the presence of α1 and/or α6 subunits in the cerebellar GABAA receptors and the benzodiazepine-binding specificity. Receptor immunoprecipitation with the subunit-specific antibodies shows that 39% of the cerebellar GABAA receptors have α6, whereas 76% of the receptors have α1 as determined by [3H]muscimol binding. Results show that 42–45% of the receptors having α6 also have α1, whereas 13–15% of the receptors that contain α1 also have α6. The immunoprecipitation results as well as immunopurification and immunoblotting experiments reveal the existence of three types of cerebellar GABAA receptors; i.e., one has both α1 and α6 subunits, a second type has α1 but not α6, and a third type has α6 but not α1 subunits. The results also show that receptors where α1 and α6 subunits coexist have two pharmacologically different benzodiazepine-binding properties, each associated with a different α subunit. The α1 subunit contributes the high-affinity binding of [3H]Ro 15-1788 (flumazenil) and the diazepam-sensitive binding of [3H]Ro 15-4513. The α6 subunit contributes the diazepam-insensitive binding of [3H]Ro 15-4513, but it does not bind [3H]Ro 15-1788 with high affinity. Thus, in the cerebellar α1–α6 GABAA receptors, there is no dominance of the pharmacology of one α subunit over the other. 相似文献
15.
The detergent n-octylpentaoxyethylene is one in the series of tenside detergents developed for membrane solubilisation. We have used this detergent to solubilise benzodiazepine receptors from rat cerebellum. The soluble receptor has an affinity (KD) for [3H]flunitrazepam of 1.8 nM +/- 0.2, which is not significantly different from that observed in synaptic membranes. Under optimal conditions (0.6% wt/vol), the number of soluble flunitrazepam binding sites (Bmax) of 0.35 pmol/mg protein suggests an apparent solubilisation of 40% of sites from the membrane. However, the absence of the characteristic facilitation of [3H]flunitrazepam binding by gamma-aminobutyric acid (GABA), cartazolate, and pentobarbital in this soluble receptor preparation suggests that such a preparation is unlikely to be a useful preparation for further studies on the molecular mechanisms underlying GABAA receptor function. 相似文献
16.
Ivermectin Interactions with Benzodiazepine Receptors in Rat Cortex and Cerebellum In Vitro 总被引:1,自引:0,他引:1
Abstract: The anthelmintic macrolide, ivermectin, enhances the binding of benzodiazepine agonist ([3 H]-diazepam) and antagonist ([3 H]β-carboline ethyl ester) ligands to rat cortical and cerebellar membrane preparations. Enhancement of benzodiazepine agonist binding is partially additive with that of γ-aminobutyric acid (GABA) and is inhibited by etazolate, bicuculline, and the steroid GABA antagonist R5135. Ivermectin-stimulated benzodiazepine antagonist binding is enhanced by bicuculline and inhibited by GABA and etazolate. The modulatory effects of bicuculline are chloride-dependent. The stimulatory effects of ivermectin, while quantitatively different in cortex and cerebellum, are qualitatively similar in both brain regions and are reduced in the presence of chloride. Ivermectin effects on benzodiazepine ligand binding to the benzodiazepine receptor complex and the differences in the effects of GABA, bicuculline, and R5135 on ivermectin-stimulated agonist and antagonist binding may provide evidence for distinct differences in the recognition sites for the two classes of benzodiazepine receptor ligand and their interactions with other components of the receptor complex. 相似文献
17.
Abstract: Ro 15–1788 is thought to interact specifically with the benzodiazepine receptor population in the mammalian CNS as an antagonist. We have compared the kinetics of interaction of this ligand with the benzodiazepine agonist flunitrazepam in the rat cerebellum. The association of [3 H]Ro 15–1788 with the benzodiazepine receptor in this brain region is monoexponential, and the dissociation, initiated either by dilution or by displacement with a number of different ligands, also obeys simple monoexponential kinetics. There is no evidence of cooperative interactions with this ligand, and its dissociation is unaffected by the presence of 100 μ M γ-aminobutyric acid and/or 150 m M sodium chloride. In contrast, the dissociation of the agonist [3 H]flunitrazepam is biphasic, and the possible interpretation of this data in terms of agonist-induced conformational change is discussed. Evidence is also presented that the mechanism of interaction of Ro 15–1788 with the benzodiazepine receptor population in hippocampal membranes is distinct from that found in the cerebellum. 相似文献
18.
19.
Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1,4]benzodiazepine-3-carboxylate), a partial inverse agonist of brain benzodiazepine receptors, has been shown to antagonize some actions of ethanol. In addition to conventional benzodiazepine binding sites, Ro 15-4513 binds to a specific cerebellar protein, the binding of which has been shown to be insensitive to diazepam. The binding of [3H]Ro 15-4513 was studied in washed membranes of the cerebellum, hippocampus, and cerebral cortex of two rat lines developed for differences in their sensitivity to ethanol-induced motor impairment. Only minor differences were found in the estimated parameters (KD and Bmax) for the total specific binding between the rat lines. The main difference between the rat lines was, however, observed in the characteristics of the cerebellar binding, all of which was displaced by diazepam in most of the alcohol-sensitive [alcohol-nontolerant (ANT)] rats, in contrast to only approximately 75% displacement in most of the alcohol-insensitive [alcohol-tolerant (AT)] ones. The following cerebellar results were obtained with the major subgroups of both lines, i.e., with the AT rats chosen for the presence of the diazepam-insensitive binding and with the ANT rats chosen for its absence. The KD for the total specific [3H]Ro 15-4513 binding in the ANT animals was about half of that in the AT animals. No line difference was found in the Bmax of the binding in these rats. Photolabeling with [3H]Ro 15-4513 showed that the diazepam-insensitive binding was in a protein with a molecular weight of 55,000.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
S. John Mihic Valerie J. Whatley Susan J. McQuilkin R. Adron Harris† 《Journal of neurochemistry》1994,62(5):1790-1794
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor. 相似文献