首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topography of the subunits of the membrane sector F0 of the ATP synthase complex in the bovine mitochondrial inner membrane was studied with the help of subunit-specific antibodies raised to the F0 subunits b, d, 6, F6, A6L, OSCP (oligomycin-sensitivity-conferring protein), and N,N' -dicyclohexylcarbodiimide (DCCD)-binding proteolipid and to the ATPase inhibitor protein (IF1) as an internal control. Exposure of F0 subunits in inverted and right-side-out inner membranes was investigated by direct antibody binding as well as by susceptibility of these subunits to degradation by various proteases as monitored by gel electrophoresis of the membrane digests and immunoblotting with the subunit-specific antibodies. Results show that subunits b, d, F6, A6L (including its C-terminal end) and OSCP were exposed on the matrix side. Sufficient masses of these subunits to recognize antibodies or undergo proteolysis were not exposed on the cytosolic side. This was also the case for subunit 6 and the DCCD-binding proteolipid on either side of the inner membrane. Quantitative immunoblotting in which bound radio-activity from [125I]protein A was employed to estimate the concentration of an antigen in a sample allowed the determination of the stoichiometry of several F0 subunits and IF1 relative to F1-ATPase. Results showed that per mol of F1 there are in bovine heart mitochondria 1 mol each of d, OSCP, and IF1, and 2 mol each of b and F6. Subunit 6 and the DCCD-binding proteolipid could not be quantitated, because the former transferred poorly to nitrocellulose and the latter's antibody did not bind [125I]protein A.  相似文献   

2.
The requirement of bovine heart mitochondrial oligomycin sensitivity conferring protein (OSCP) in conferring dicyclohexylcarbodiimide (DCCD)-sensitivity to membrane-bound F1 was investigated by using OSCP-depleted membrane fraction (UF0) of ATP synthase. The ATPase activity of UF0-F1 was completely insensitive to DCCD while that of UF0-F1-OSCP was inhibited 95% by 16 microM DCCD. Both UF0-F1 and UF0-F1-OSCP complexes bound 5 nmol [14C]DCCD/mg UF0, and all the radioactivity was found to be associated with the DCCD-binding proteolipid. The data suggest that OSCP may be necessary for transmitting not only energy-linked signals, but also signals induced by F0 inhibitory ligands in mitochondrial energy transduction.  相似文献   

3.
We have studied the functional effect of limited proteolysis by trypsin of the constituent subunits in the native and reconstituted F1F0 complex and isolated F1 of the bovine heart mitochondrial ATP synthase (EC 3.6.1.34). Chemical cross-linking of oligomycin-sensitivity conferring protein (OSCP) with other subunits of the ATP synthase and the consequent functional effects were also investigated. The results obtained show that the alpha subunit N-terminus is essential for the correct, functional connection of F1 to F0. The alpha-subunit N-terminus contacts OSCP which, in turn, contacts the F0I-PVP(b) and the F0-d subunits. The N-terminus of subunit alpha, OSCP, a segment of subunit d and the C-terminal and central region of F0I-PVP(b) subunits are peripherally located with respect to subunits gamma and delta which are completely shielded in the F1F0 complex against trypsin digestion. This qualifies the N-terminus of subunit alpha, OSCP, subunit d and F0I-PVP(b) as components of the lateral element of the stalk. These subunits, rather than being confined at one side of the complex which would leave most of the central part of the gamma subunit uncovered, surround the gamma and the delta subunits located in the central stalk.  相似文献   

4.
T Yagi 《Biochemistry》1987,26(10):2822-2828
The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and Bacillus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [14C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [14C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity.  相似文献   

5.
T Yagi  T M Dinh 《Biochemistry》1990,29(23):5515-5520
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. When the Paracoccus NADH dehydrogenase complex was irradiated by UV light in the presence of [adenylate-32P]NAD, radioactivity was incorporated exclusively into one of three polypeptides of Mr approximately 50,000. Similar results were obtained when [adenylate-32P]NADH was used. The labeling of the Mr 50,000 polypeptide was diminished when UV irradiation of the enzyme with [adenylate-32P]NAD was performed in the presence of NADH, but not in the presence of NADP(H). The labeled polypeptide was isolated by preparative sodium dodecyl sulfate gel electrophoresis and was shown to cross-react with antiserum to the NADH-binding subunit (Mr = 51,000) of bovine NADH-ubiquinone oxidoreductase. Its amino acid composition was also very similar to that of the bovine NADH-binding subunit. These chemical and immunological results indicate that the Mr 50,000 polypeptide is an NADH-binding subunit of the Paracoccus NADH dehydrogenase complex.  相似文献   

6.
Bueler SA  Rubinstein JL 《Biochemistry》2008,47(45):11804-11810
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.  相似文献   

7.
Oligomycin sensitivity conferral protein (OSCP), factor 6 (F6), and ATPase inhibitor protein are all components of the ATP synthase complex of bovine mitochondria. They are encoded in nuclear DNA. Complementary DNA clones encoding the precursors of these proteins have been isolated from a bovine library by using mixtures of synthetic oligonucleotides as hybridization probes, and their DNA sequences have been determined. The deduced protein sequences show that the OSCP, F6, and inhibitor proteins have N-terminal presequences of 23, 32, and 25 amino acids, respectively. These presequences are not present in the mature proteins. It is assumed that they serve to direct the proteins into the mitochondrial matrix. The cDNA clones have also been employed as hybridization probes to investigate the genetic complexity of the three proteins in cows and humans. These experiments indicate that the bovine and human inhibitor and bovine F6 proteins are encoded by single genes but suggest the possibility of the presence in both species of more than one gene (or pseudogenes) for the OSCP.  相似文献   

8.
A biotinylation signal has been fused to the C terminus of the oligomycin sensitivity conferral protein (OSCP) of the ATP synthase complex from Saccharomyces cerevisiae. The signal is biotinylated in vivo and the biotinylated complex binds avidin in vitro. By electron microscopy of negatively stained particles of the ATP synthase-avidin complex, the bound avidin has been localised close to the F(1) domain. The images were subjected to multi-reference alignment and classification. Because of the presence of a flexible linker between the OSCP and the biotinylation signal, the class-averages differ in the position of the avidin relative to the F(1) domain. These positions lie on an arc, and its centre indicates the position of the C terminus of the OSCP on the surface of the F(1) domain. Since the N-terminal region of the OSCP is known to interact with the N-terminal regions of alpha-subunits, which are on top of the F(1) domain distal from the F(o) membrane domain, the OSCP extends almost 10nm along the surface of F(1) down towards F(o) where it interacts with the C terminus of the b subunit, which extends up from F(o). The labelling technique has also allowed a reliable 2D projection map to be developed for the intact ATP synthase from S.cerevisiae. The map reveals a marked asymmetry in the F(o) part of the complex that can be attributed to subunits in the F(o) domain.  相似文献   

9.
The indole-3-glycerolphosphate synthase/anthranilate synthase complex from Saccharomyces cerevisiae was purified to apparent homogeneity. The native complex with Mr approximately equal to 130 000 consists of two different subunits, the TRP2 gene product with Mr = 64 000 and the TRP3 gene product with Mr = 58 000. The larger polypeptide was identified as anthranilate synthase and is active in vitro with ammonia as cosubstrate without need of complex formation. The smaller polypeptide carries both glutamine amidotransferase activity and indole-3-glycerolphosphate synthase activity. Various steady-state kinetic parameters as well as the amino acid composition of the two polypeptides were determined.  相似文献   

10.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

11.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

12.
1. In isolated bovine heart mitochondria, the 14C-labelled dicyclohexylcarbodiimide (DCCD) induced inhibition of the ATPase activity is accompanied by labelling of three polypeptides of Mx 9000, 16 000 and 33 000. Of these, only the 9000 polypeptide reacts with [14C]DCCD proportionally to the inhibitory effect, being saturated when the enzyme is maximally inhibited. 2. The 9000 and 16 000 polypeptides are extracted by neutral chloroform/methanol (2 : 1 v/v) while the 33 000 polypeptide remains in the non-extractable residue. No disaggregation of the polypeptides takes place during the extraction. 3. In the ATPase complex immunoprecipitated with antibody against F1, the 9000 and 16 000 polypeptides are present, but the 33 000 polypeptide is absent. 4. The results obtained indicate that the 33 000 polypeptide is not a component of the ATPase complex. As far as F0 is concerned, two types of the binding sites for DCCD were demonstrated, corresponding to the 9000 and 16 000 polypeptides. Their existence is explained by a non-random arrangement among individual monomers of the DCCD-binding protein.  相似文献   

13.
14.
The mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is inhibited by N,N'-dicyclohexylcarbodiimide (DCCD), and this inhibition correlates with incorporation of radioactivity from [14C]DCCD into a Complex I subunit of Mr 29,000 (Yagi, T. (1987) Biochemistry 26, 2822-2828). Resolution of [14C]DCCD-labeled Complex I in the presence of NaClO4 showed that the labeled Mr 29,000 subunit was in the hydrophobic fraction of the enzyme. This fraction, which contains greater than 17 unlike polypeptides, was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the Mr 29,000 subunit, containing bound [14C]DCCD, was isolated and purified. The amino acid composition and partial sequence of this subunit corresponded to those predicted from the mitochondrial DNA for the product of the mtDNA gene designated ND-1. The identity of the Mr 29,000 subunit with the ND-1 gene product was further confirmed by immunoblotting and immunoprecipitation experiments, using the hydrophobic fraction of [14C]DCCD-labeled Complex I and antiserum to a C-terminal undecapeptide synthesized on the basis of the human mitochondrial ND-1 nucleotide sequence. Thus, it appears that the DCCD-binding subunits of the respiratory chain Complexes I, III, and IV and in certain organisms the DCCD-binding subunit of the ATP synthase complex (Complex V) are all mtDNA products.  相似文献   

15.
In the mitochondrial ATP synthase (mtATPase) of the yeast Saccharomyces cerevisiae, the stoichiometry of subunits d, oligomycin-sensitivity conferring protein (OSCP), and b is poorly defined. We have investigated the stoichiometry of these subunits by the application of hexahistidine affinity purification technology. We have previously demonstrated that intact mtATPase complexes incorporating a Hex6-tagged subunit can be isolated via Ni2+-nitrilotriacetic acid affinity chromatography (Bateson, M., Devenish, R. J., Nagley, P., and Prescott, M. (1996) Anal. Biochem. 238, 14-18). Strains were constructed in which Hex6-tagged versions of subunits d, OSCP, and b were coexpressed with the corresponding wild-type subunit. This coexpression resulted in a mixed population of mtATPase complexes containing untagged wild-type and Hex6-tagged subunits. The stoichiometry of each subunit was then assessed by determining whether or not the untagged wild-type subunit could be recovered from Ni2+-nitrilotriacetic acid purifications as an integral component of those complexes absorbed by virtue of the Hex6-tagged subunit. As only the Hex6-tagged subunit was recovered from such purifications, we demonstrate that the stoichiometry of subunits d, OSCP, and b in yeast is 1 in each case.  相似文献   

16.
An immunologic probe for a defined region of the myelin proteolipid   总被引:1,自引:0,他引:1  
Antiserum has been prepared against an isolated polypeptide fragment, designated BPS4, which comprises residues 181-211 of the bovine myelin proteolipid. The antiserum recognizes the intact bovine proteolipid protein but not several other polypeptide fragments within the molecule, nor the myelin basic protein, thus demonstrating specificity of the antiserum. In a competitive enzyme-linked immunosorbent assay, both the major proteolipid and the DM 20 bands observed on sodium dodecyl sulfate-polyacrylamide gels reacted equally well with the antiserum, indicating that the BPS4 segment is present in both molecular species. The rat myelin proteolipid protein cross-reacted with antiserum against the intact bovine protein but showed minimal cross-reactivity with the antiserum against the bovine BPS4 fragment. This was demonstrated in parallel experiments using three types of preparations, namely, sodium dodecyl sulfate-solubilized myelin, delipidated myelin, and isolated proteolipid apoprotein. The difference between the bovine and rat proteins, which presumably reflects amino acid sequence differences, is thus detectable by the antiserum against the polypeptide fragment but not by the antiserum against the intact protein. Isolated bovine myelin membranes did not bind the antiserum in the absence of detergent or without delipidation. On the other hand, in vesicles reconstituted with the intact bovine apoprotein, the BPS4 segment was oriented on the exterior face of the liposome where it was capable of binding antibody and was susceptible to Pronase digestion.  相似文献   

17.
Exon trapping was used to clone portions of potential genes from human chromosome 21. One trapped sequence showed striking homology with the bovine and rat ATP synthase OSCP (oligomycin sensitivity conferring protein) subunit. We subsequently cloned the full-length human ATP synthase OSCP cDNA (GDB/HGMW approved name ATP50) from infant brain and muscle libraries and determined its nucleotide and deduced amino acid sequence (EMBL/GenBank Accession No. X83218). The encoded polypeptide contains 213 amino acids, with more than 80% identity to bovine and murine ATPase OSCP subunits and over 35% identity to Saccharomyces cerevisiae and sweet potato sequences. The human ATP50 gene is located at 21q22.1-q22.2, just proximal to D21S17, in YACs 860G11 and 838C7 of the Chumakov et al. (Nature 359:380, 1992) YAC contig. The gene is expressed in all human tissues examined, most strongly in muscle and heart. This ATP50 subunit is a key structural component of the stalk of the mitochondrial respiratory chain F1F0-ATP synthase and as such may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome (trisomy 21).  相似文献   

18.
The H+-ATPase of Beta vacuolar membrane (tonoplast) comprises at least three functionally distinct subunits of Mr = 67,000, 57,000, and 16,000, respectively (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). The hydrophobic carboxyl reagent N,N'-dicyclohexylcarbodiimide (DCCD) inactivates the enzyme with pseudo-first order kinetics, and the concentration dependence of the reaction indicates that DCCD interacts with a single site on the enzyme to exert its inhibitory effect. The apparent pseudo-first order rate constant (k0) is reciprocally dependent on membrane protein concentration, which is expected if a large fraction of the DCCD partitions into the lipid phase. k0 has a nominal value of 1000 M-1 min-1 at a protein concentration of 250 micrograms/ml, although when phase partitioning is taken into account, the true, protein concentration-independent value of k0 is calculated to be about an order of magnitude lower. [14C]DCCD primarily labels the Mr = 16,000 polypeptide of native tonoplast vesicles. Binding is venturicidin-insensitive and occurs at a rate similar to the rate of enzyme inactivation, implying that inhibition is a direct result of covalent modification of the Mr = 16,000 polypeptide. Labeling of the containing Mr = 8,000 subunit of mitochondrial F0F1-ATPase is, on the other hand, faster by a factor of 5 and totally abolished by venturicidin. These results confirm that the Mr = 16,000 polypeptide which copurifies with tonoplast H+-ATPase activity is a subunit of the enzyme. Most of the DCCD-reactive Mr = 16,000 subunit is extracted from acetone:ethanol-washed tonoplast vesicles by chloroform:methanol. [14C]DCCD bound to the Mr = 16,000 polypeptide is enriched in the chloroform:methanol extract by 5-fold compared with native tonoplast and the specific activity (nmol of [14C]DCCD/mg of protein) can be increased a further 37-fold by chromatography on DEAE-Sephadex. It is concluded that the Mr = 16,000 subunit of the tonoplast H+-ATPase is a proteolipid.  相似文献   

19.
The dephosphorylation of lens alpha-crystallin A chain   总被引:1,自引:0,他引:1  
The present communication reports the presence of a phosphoprotein phosphatase activity in bovine lens preparations which dephosphorylates alpha Ap, the phosphorylated form of alpha A, one of the alpha-crystallin polypeptides, in a Ca2+/calmodulin dependent manner. The activity was found in soluble preparations from epithelial cells but it could not be detected in similar preparations from fiber cells. A 60,000 Mr calmodulin binding polypeptide and a 15,000 Mr polypeptide found in the epithelial cell preparations comigrated in SDS-PAGE with the A and B subunits of bovine brain calcineurin (phosphoprotein phosphatase 2B) respectively. The 15,000 Mr was specifically recognized by an anti-bovine brain calcineurin antiserum. Bovine brain calcineurin was as effective in dephosphorylating alpha Ap as the lens preparations. Thus, it is likely that the activity present in the lens is related to this enzyme. The results indicate that the lens specific polypeptide alpha A may be subject to metabolic control through phosphorylation and dephosphorylation pathways regulated by cAMP and calcium respectively. Changes in the activities of these pathways appear to occur during differentiation of the lens epithelial cell and may be related to gene regulation during the differentiation process.  相似文献   

20.
Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. Recently, two different complementation groups (G13, G57), consisting of yeast nuclear mutants with defective F1, have been described. Biochemical analyses indicate that the mutational block in both groups of mutants affects a critical step needed for the assembly of the alpha and beta subunits into the F1 oligomer after their transport into mitochondria. In this study the ATP12 gene representative of the nuclear respiratory-deficient mutant of S. cerevisiae (pet) complementation group G57 has been cloned and the encoded product partially characterized. The ATP12 reading frame is 975 base pairs long and codes for a protein of Mr = 36,587. The ATP12 protein is not homologous to the subunits of F1 whose sequences are known, nor does it exhibit significant primary structure similarity to any known protein. In vitro import assays indicate that ATP12 protein is synthesized as a precursor approximately 3 kDa larger than the mature protein. The mitochondrial localization of the protein has been confirmed by Western blot analysis of mitochondrial proteins with an antibody against a hybrid protein expressed from a trpE-ATP12 fusion. Fractionation of mitochondria indicates further that the ATP12 protein is either a minor component of the matrix compartment or is weakly bound to the matrix side of the inner membrane. The molecular weight of the native protein, estimated from its sedimentation properties in sucrose gradients, is at least two times larger than the monomer. This suggests that the ATP12 protein is probably part of a larger complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号