首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hydrogen peroxide on adrenergic and muscarinic responses of rat airway smooth muscle was studied. The trachea muscle and the lung parenchymal strip were contracted with methacholine and relaxed with (-)-isoprenaline. Recording of three (-)-isoprenaline curves on the trachea muscle and the lung parenchymal strip was followed by treatment for 30 min with hydrogen peroxide (H2O2) (1mM) after which a new dose response curve for (-)-isoprenaline was constructed. Using the trachea muscle this treatment with H2O2 resulted in a decrease of 61% of the maximum contraction by methacholine compared with the control and a complete inhibition of the relaxation by (-)-isoprenaline. In the lung parenchymal strip preparation we found, after the same treatment no reduction of the contraction by methacholine and 61% reduction of the relaxation by (-)-isoprenaline, compared with the control. The results demonstrate that the adrenergic response in rat airways is more susceptible to hydrogen peroxide than the muscarinic response.  相似文献   

2.
We have studied the effects of dietary depletion of vitamin E and selenium on endogenous ubiquinone-dependent antioxidant system. Deficiency induced an increase in both coenzyme Q9 and Q10 in liver tissue, reaching a maximum between 4 and 7 weeks of deficient diet consumption. Cytochrome b5 reductase polypeptide was also enriched in membranes after 5 weeks of deficient diet consumption. Substantial DT-diaphorase activity was found in deficient, but not in control plasma membranes. Deficient membranes were very sensitive to lipid peroxidation, although a great protection was observed after incubation with NAD(P)H. Our results show that liver cells can boost endogenous ubiquinone-dependent protective mechanisms in response to deficiency in vitamin E and selenium.  相似文献   

3.
To examine the mechanism by which vitamins C and E alter phagocyte function, a series of in vitro manipulations were conducted with cells isolated from the head-kidney of hybrid striped bass (average weight 680 g) fed a diet supplemented with minimum requirement levels of vitamins C and E for 2 weeks. Head-kidney phagocytes were cultured in media containing physiologically deficient (23 microM, adequate (45 microM) or excessive (182 microM) concentrations of vitamin C, and physiologically deficient (5 microM), adequate (9 microM) or excessive (32 microM) concentrations of vitamin E for 18 h. Following culture and stimulation, levels of reactive oxygen intermediates and hydrogen peroxide were determined. There were no effects of vitamin C or vitamin E concentrations on hydrogen peroxide or extracellular O2- generation. Intracellular O2- production, however, was significantly (P < or = 0.05) affected. When vitamin C was supplied at deficient levels to the medium, vitamin E elevated O2- production to levels not different from those of cells incubated with requirement levels of both vitamins. Similarly, when vitamin E was deficient in the media, vitamin C supplementation at requirement levels normalised intracellular O2- production. This data provides support for the presence of a vitamin C and vitamin E sparing mechanism in phagocytic head-kidney cells of hybrid striped bass and yield some insight into the mechanisms by which vitamin C and vitamin E function in immunomodulation.  相似文献   

4.
Vitamin E and selenium play essential roles in preventing in vivo lipid peroxidation and free radical damage. Hyperbaric oxygen (HBO) treatment adversely affected the electroretinograms (ERGs) of rats fed a diet deficient in both vitamin E and selenium (the basal or B diet) or a diet deficient in vitamin E alone (B + Se diet). After 4 weeks of HBO treatment (3.0 ATA or 100% oxygen, 1.5 hours per day, 5 day/week) rats fed the B diet deficient in vitamin E and selenium for 6 weeks showed decreased (p less than 0.05) a-wave amplitudes, 85 +/- 9 microvolts (microV), n = 11, compared with a-waves recorded (150 +/- 10 microV, n = 21) for age matched rats fed an identical diet for 6 weeks but not treated with HBO. After 15 weeks of HBO treatment, rats fed the B + Se diet deficient in vitamin E alone showed decreased (p less than 0.01) a-wave (61 +/- 9 microV, n = 4) and b-wave (253 +/- 23 microV, n = 4) amplitudes compared with a-wave (115 +/- 7 microV, n = 4) and b-wave amplitudes (450 +/- 35 microV, n = 4) for age matched rats fed the same diet but not treated with HBO. Decreased a- or b-wave amplitudes provide evidence of retinal damage. Rats fed a diet supplemented with vitamin E and selenium or vitamin E alone showed no decreases in either a- or b-wave amplitudes after 15 weeks of HBO treatment.  相似文献   

5.
The effect of long-term diets enriched with natural antioxidants was studied on Wistar rats with average initial body weight 150 g. After enrichment of the diet with selenium (0.1 ppm of sodium selenite per 100 g of diet), with vitamin E (6 mg of alpha-tocopherol per 100 g of diet) and selenium and vitamin E together the following results were obtained: diets enriched with selenium or vitamin E given for 12 months reduced the production of lipid peroxides in the liver and serum of the rats. On the other hand, addition of both antioxidants to the diet had no effect on lipid peroxide levels in the animals. Diet enrichment for 12 and 18 months with selenium or vitamin E had no effect on the levels of total cholesterol and HDL cholesterol. The obtained results suggest that selenium and alpha-tocopherol exert an inhibitory action on the processes of ageing in the experimental animal model.  相似文献   

6.
Effects of the combination of vitamin E, selenium, and β-carotene on oxidative damage to rat heart, kidney, lung, and spleen were studied by measurement of the production of oxidized heme proteins (OHP) during spontaneous and prooxidant-induced oxidation. Male SD rats were fed with a vitamin E and selenium deficient diet or a diet supplemented with vitamin E, selenium, and β-carotene, Homogenates of heart, kidney, lung, and spleen were incubated at 37°C with and without the presence of bromotrichloromethane (CBrCl3). The diet supplemented with antioxidants showed a strong protective effect against oxidative damage to heme proteins during the early stages of both spontaneous and CBrCl3-induced oxidation in contrast to the antioxidant deficient diet. Synergism of multiple antioxygenic nutrients against oxidative damage to various animal tissues is discussed.  相似文献   

7.
Sixteen growing pigs were fed a vitamin E and selenium deficient diet; half of the animals (Group 2) were given a daily supply of vitamin E and selenium. After having been fed these diets for 53 days, the pigs were infected orally with minced colonic material from cases with typical swine dysentery. This exposure resulted in outbreaks of swine dysentery in both groups. The incubation times were, however, distinctly shorter and the clinical symptoms much more pronounced in Group 1 than in Group 2. The patho^morphological lesions in the colon also differed between the 2 groups. In the pigs of Group 1 evident pseudomembraneous lesions were observed in the spiral colon. In Group 2, the colonic alterations consisted predominantly of a catarrhal enteritis; pseudomembranes occurred in a minor part of colon in only 4 pigs. Both the clinical and the chemical observations and the pathological findings indicated a much better vitamin E and selenium balance in the pigs of Group 2. It is concluded that the treatment with vitamin E and selenium in Group 2 greatly increased resistance to swine dysentery.  相似文献   

8.
Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn? Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn? Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific combination of nutrients acts synergistically in enhancing muscarinic M1 receptor responses, probably by facilitating receptor-mediated G protein activation.  相似文献   

9.
Metabolic and functional defects in selenium deficiency   总被引:1,自引:0,他引:1  
This paper is concerned with present-day knowledge of the biological role of selenium, of its interaction with other nutrients including trace elements, and with the importance of selenium in human nutrition and health. Selenium has been shown to be an integral part of glutathione peroxidase, which catalyses the reduction of a large range of lipid hydroperoxides and hydrogen peroxide. The interrelation between vitamin E, selenium and polyunsaturated fatty acids is complex. First, selenium in glutathione peroxidase may control intracellular levels of hydrogen peroxide, which affect the formation of active oxygen metabolites that may serve as initiators of lipid peroxidation; this role of selenium is closely related to that of superoxide dismutases, which control intracellular levels of the superoxide anion. Secondly, vitamin E may control the formation of lipid hydroperoxides through its antioxidant function, as well as possibly entering into a structural relation with membrane phospholipids. Thirdly, glutathione peroxidase may catalyse the reduction of lipid hydroperoxides, formed from membrane lipids, to hydroxyacids without detriment to the cellular economy. In the field of human nutrition, the lack of selenium has been shown to be the cause of a cardiomyopathy known as Keshan disease, occurring in the People's Republic of China. Blood selenium levels in patients from this area are compared with blood selenium levels in three other parts of the world and the conclusion is reached that the blood selenium level of populations in Keshan disease regions are exceptionally low and that Keshan disease is the first demonstration that selenium is an essential trace element for man.  相似文献   

10.
Several oxidative stressors (dietary selenium deficiency, dietary vitamin E deficiency coupled with fish oil feeding, genetic reduction of glutathione peroxidase activity) allow a normally benign coxsackievirus B3 (CVB3/0) to damage heart muscle in host mice. This study investigated whether dietary iron overload, another oxidant stress, would also permit CVB3/0 to exert a cardiopathologic effect in vitamin E-deficient (-VE) mice. Four groups of mice were fed either a -VE or a +VE diet containing either an adequate or an excessive (30x) amount of iron. After 4 weeks of feeding, the mice were inoculated with CVB3/0 and heart damage was assessed at various times postinfection. Mice fed a diet sufficient in VE with excess iron developed heart damage equivalent to mice fed a diet deficient in vitamin E without excess iron. However, severe heart damage occurred in the group fed a diet deficient in VE with excess iron, which was the most pro-oxidative diet. The highest heart viral titers were found in mice fed the -VE/excessive iron diet. However, the extent of heart damage did not always correlate with the formation of TBARS in liver homogenates. Further research is needed to clarify the role of oxidative stress and iron overload in determining the course of viral infection.  相似文献   

11.
In these present experiments, rats were fed a low casein, vitamin E and selenium deficient diet and were killed at various time intervals up to the occurrence of massive liver necrosis. Liver malondialdehyde, and liver and serum vitamin E levels were analyzed simultaneously with a pathological investigation of the features of the liver and measurement of serum GOT and GPT activities. These investigations were also performed on control rats given a high casein, vitamin E defincient diet or a low casein, vitamin E supplemented diet.

The results show that the liver malondialdehyde level was not increased concomitant with the decrease in liver and serum vitamin E level nor with the occurrence of massive liver necrosis. Liver cells of the rats fed on the low casein, vitamin E deficient diet showed swelling of the cytoplasm at the initial stage, and progressive centrilobular lipid deposition was observed by Sudan III stain.  相似文献   

12.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

13.
Toxoplasmosis, particularly toxoplasmic encephalitis, has emerged as a major cause of morbidity and mortality in patients with acquired immunodeficiency syndrome. Patients infected with human immunodeficiency virus typically experience chronic oxidative stress, and concurrent infection with the intracellular parasite Toxoplasma gondii would be expected to further exacerbate this condition. The present study was conducted to determine whether vitamin E and selenium supplementation might be beneficial in a murine model of toxoplasmosis. To investigate the effect of these antioxidants on the severity of parasitic infection. Swiss Webster (SW) or C57Bl/6J mice infected with oocysts of the ME49 strain of T. gondii were maintained on diets containing no vitamin E or selenium, no vitamin E and 8 ppm selenium, 400 IU/kg vitamin E plus 8 ppm selenium, or vitamin E and selenium at the levels present in standard rodent chow (16 IU/kg and 0.2 ppm, respectively). The results of the study showed that increased dietary supplementation with vitamin E and selenium resulted in trends toward increased tissue cyst number, tissue pathology, and weight loss during infection. In contrast, both resistant SW and susceptible C57Bl/6J mice fed a deficient diet (complete absence of vitamin E and selenium) showed the lowest mean numbers of tissue cysts and very little evidence of tissue pathology during chronic infection.  相似文献   

14.
The aim of this study was tracing of changes in the activity of glutathione peroxidase (GSHPx), glutathione transferase (GSH S-Tr), aspartate aminotransferase (AspAT) and alanine aminotransferase (A1AT) in the brain as a result of diet enrichment with antioxidants: selenium (Se), vitamin E and vitamin B15 (pangamic acid). The experiment was carried out on Wistar rats with initial body weight 150 g. Following prolonged enrichment of diet with Se (0.1 ppm of sodium selenite), vitamin E (6 mg/100 g of diet) and vitamin B15 (2.5 mg/100 g of diet) the following results were obtained. The activity of GSHPx in brain microsomes was not changed after one year of vitamin E administration when it was measured against hydrogen hydroxide and against cumene hydrochloride; vitamin E administration increased the activity of GSH S-Tr in the cytoplasmic fraction of brain cells. Diet enrichment with selenium increased after 12 and 18 months the activity of GSHPx measured against both substrates, and GSH S-Tr activity increased considerably. Presence of vitamin B15 in diet reduced GSHPx activity after one-year or longer administration, after 18 months the activity of GSH S-Tr was reduced also. No changes were noted in the activity of AspAT and A1AT.  相似文献   

15.
A study on the effect of retinolin vitro on the hemolysis of vitamin E deficient rat red blood cells showed that retinol enhanced the lysis of the E deficient cells as compared to the lysis of normal cells. The lipid peroxidation present during hydrogen peroxide induced lysis of E deficient cells was however markedly inhibited in the presence of retinol without affecting the rate of lysis. In an actively peroxidising system of non-enzymatic lipid peroxidation of rat liver or brain homogenates and of brain lysosomes incubated with human erythrocytes, no lysis was obtained; incorporation of retinol in such systems resulted in lysis but no peroxidation. Hydrogen peroxide generating substances almost completely inhibited the lysis of normal human erythrocytes by retinol, but linoleic acid hydroperoxide and auto-oxidised liver or brain homogenates and ox-brain liposomes increased the lysis. It is concluded that vitamin E deficient erythrocyte hemolysis may be augmented by retinol, an anti-oxidant, having a lytic function without the peroxidation of stromal lipids  相似文献   

16.
Vitamin E regulates mitochondrial hydrogen peroxide generation.   总被引:11,自引:0,他引:11  
The mitochondrial electron transport system consumes more than 85% of all oxygen used by the cells, and up to 5% of the oxygen consumed by mitochondria is converted to superoxide, hydrogen peroxide, and other reactive oxygen species (ROS) under normal physiologic conditions. Disruption of mitochondrial ultrastructure is one of the earliest pathologic events during vitamin E depletion. The present studies were undertaken to test whether a direct link exists between vitamin E and the production of hydrogen peroxide in the mitochondria. In the first experiment, mice were fed a vitamin E-deficient or-sufficient diet for 15 weeks, after which the mitochondria from liver and skeletal muscle were isolated to determine the rates of hydrogen peroxide production. Deprivation of vitamin E resulted in an approximately 5-fold increase of mitochondrial hydrogen peroxide production in skeletal muscle and a 1-fold increase in liver when compared with the vitamin E-supplemented group. To determine whether vitamin E can dose-dependently influence the production of hydrogen peroxide, four groups of male and female rats were fed diets containing 0, 20, 200, or 2000 lU/kg vitamin E for 90 d. Results showed that dietary vitamin E dose-dependently attenuated hydrogen peroxide production in mitochondria isolated from liver and skeletal muscle of male and female rats. Female rats, however, were more profoundly affected by dietary vitamin E than male rats in the suppression of mitochondrial hydrogen peroxide production in both organs studied. These results showed that vitamin E can directly regulate hydrogen peroxide production in mitochondria and suggest that the overproduction of mitochondrial ROS is the first event leading to the tissue damage observed in vitamin E-deficiency syndromes. Data further suggested that by regulating mitochondrial production of ROS, vitamin E modulates the expression and activation of signal transduction pathways and other redox-sensitive biologic modifiers, and thereby delays or prevents degenerative tissue changes.  相似文献   

17.
Glutathione S-transferases are a group of multifunctional isozymes that play a central role in the detoxification of hydrophobic xenobiotics with electrophilic centers (1). In this study we investigated the effects of in vitro lipid peroxidation on the activity of liver microsomal glutathione S-transferases from rats either supplemented or deficient in both vitamin E and selenium. Increased formation of malondialdehyde (MDA), a by-product of lipid peroxidation, was associated with a decreased activity of rat liver microsomal glutathione S-transferase. The inhibition of glutathione S-transferase occurred rapidly in microsomes from rats fed a diet deficient in both vitamin E and selenium (the B diet) but was delayed for 15 minutes in microsomes from rats fed the same diet but supplemented with these micro-nutrients (B+E+Se diet). Lipid peroxidation inhibits microsomal glutathione S-transferase and this inhibition is modulated by dietary antioxidants.  相似文献   

18.
Ozkan MH  Uma S 《Life sciences》2005,78(1):14-21
The effects of high glucose on endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations of isolated rat mesenteric artery and the possible involvement of reactive oxygen species in these responses were investigated. After precontraction with phenylephrine (3 x 10(-8)-10(-7) M), acetylcholine (10(-8)-3 x 10(-6) M) and A 23187 (10(-8)-3 x 10(-6) M), a calcium ionophore, induced concentration-dependent relaxations in the presence of N(W)-nitro-l-arginine methyl ester (L-NAME) (10(-4) M) and indomethacin (10(-5) M). These relaxations were abolished in the presence of charybdotoxin (2 x 10(-7) M) plus apamin (10(-7) M) and were assumed to be mediated by EDHF. Effects of elevated glucose were examined by incubating the arterial rings for 6 h in Krebs-Henseleit solution containing 22.2 mM glucose. Under these conditions relaxation to acetylcholine was significantly attenuated but was unchanged when the tissues were incubated for 6 h in solution containing 11.1 mM mannitol used as hyperosmotic control. Addition of superoxide dismutase (SOD) (75 U/ml) and combination of SOD with catalase (200 U/ml) during incubation with high glucose significantly preserved the impairment of EDHF-mediated relaxations to acetylcholine. A 23187-induced endothelium-dependent relaxation was not affected by high glucose. Similarly, relaxations to pinacidil (10(-10)-10(-5) M) and to sodium nitroprusside (SNP) (10(-10)-3 x 10(-7) M) were also unchanged in the rings exposed to high glucose. These results suggest that in rat mesenteric arteries exposed to elevated glucose receptor-dependent EDHF-mediated relaxations (acetylcholine-induced) are impaired whereas receptor-independent ones (A 23187-induced) and responses to smooth muscle relaxants that exert their effects through mechanisms independent of endothelium are unaffected. Our findings lead us to propose that reactive oxygen species like superoxide ((.)O(2)(-)) and hydrogen peroxide (H(2)O(2)) do seem to play a role in the impairment of EDHF-mediated relaxations in the presence of elevated glucose.  相似文献   

19.
An experiment investigated the effect of different selenium supplementations on the antioxidant defence system and on the occurrence of muscle dystrophy in growing turkeys. Newly hatched male turkeys (B.U.T. Big 6) were divided into eight groups of 18 turkeys each and fed either a basal diet (selenium <0.010 mg/kg diet), or the basal diet supplemented with 0.10; 0.15; 0.20; 0.25; 0.30; 0.35 or 0.40 mg selenium/kg diet in the form of sodium selenate. Vitamin E was adequately supplemented in all diets. After 35 days, muscle damage parameters including aspartate aminotransferase, creatine kinase, creatine kinase M and B were significantly increased in the selenium deficient Group I. A significant reduction of weight gain, feed consumption and selenium dependent glutathione peroxidase activity was also observed in the liver of selenium deficient birds. The ratio of oxidised glutathione (GSSG) to total glutathione (tGSH) was substantially altered in the selenium deficient Group I as well as in Group II (0.10 mg selenium/kg feed). The activity of glutathione reductase (GR) and glutathione-S-transferase (GST) was not affected by selenium deficiency.  相似文献   

20.
The effects of deficiencies in the antioxidant nutrients, vitamin E and selenium, on the host response to gastrointestinal nematode infection are unknown. The aim of the study was to determine the effect of antioxidant deficiencies on nematode-induced alterations in intestinal function in mice. BALB/c mice were fed control diets or diets deficient in selenium or vitamin E and the response to a secondary challenge inoculation with Heligmosomoides polygyrus was determined. Egg and worm counts were assessed to determine host resistance. Sections of jejunum were mounted in Ussing chambers to measure changes in permeability, absorption, and secretion, or suspended in organ baths to determine smooth muscle contraction. Both selenium and vitamin E deficient diets reduced resistance to helminth infection. Vitamin E, but not selenium, deficiency prevented nematode-induced decreases in glucose absorption and hyper-contractility of smooth muscle. Thus, vitamin E status is an important factor in the physiological response to intestinal nematode infection and may contribute to antioxidant-dependent protective mechanisms in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号