首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seamless ligation cloning extract (SLiCE) method is a novel seamless DNA cloning tool that utilizes homologous recombination activities in Escherichia coli cell lysates to assemble DNA fragments into a vector. Several laboratory E. coli strains can be used as a source for the SLiCE extract; therefore, the SLiCE-method is highly cost-effective.The SLiCE has sufficient cloning ability to support conventional DNA cloning, and can simultaneously incorporate two unpurified DNA fragments into vector. Recently, many seamless DNA cloning kits have become commercially available; these are generally very convenient, but expensive. In this study, we evaluated the cloning efficiencies between a simple and highly cost-effective SLiCE-method and a commercial kit under various molar ratios of insert DNA fragments to vector DNA. This assessment identified that the SLiCE from a laboratory E. coli strain yielded 30?85% of the colony formation rate of a commercially available seamless DNA cloning kit. The cloning efficiencies of both methods were highly effective, exhibiting over 80% success rate under all conditions examined. These results suggest that SLiCE from a laboratory E. coli strain can efficiently function as an effective alternative to commercially available seamless DNA cloning kits.  相似文献   

2.
Nagano Y  Takao S  Kudo T  Iizasa E  Anai T 《Plant cell reports》2007,26(12):2111-2117
T-DNA binary vectors are often used in plant transformation experiments. Because they are usually very large and have few restriction sites suitable for DNA ligation reactions, cloning DNA fragments into these vectors is difficult. We provide herein an alternative to cloning DNA fragments into very large vectors. Our yeast-based recombineering method enables DNA fragments to be cloned into certain types of T-DNA binary vectors by one-step transformation without the requirement of specific recombination sites or precisely positioned restriction ends, thus making the cloning process more flexible. Moreover, this method is inexpensive and is applicable to multifragment cloning.  相似文献   

3.
D de Bruin  M Lanzer  J V Ravetch 《Genomics》1992,14(2):332-339
Molecular genetic studies of the human malaria parasite Plasmodium falciparum have been hampered in part due to difficulties in stably cloning and propagating parasite genomic DNA in bacteria. This is thought to be a result of the unusual A+T bias (>80%) in the parasite's DNA. Pulsed-field gel electrophoretic separation of P. falciparum chromosomes has shown that large chromosomal polymorphisms, resulting from the deletion of DNA from chromosome ends, frequently occur. Understanding the biological implications of this chromosomal polymorphism will require the analysis of large regions of genomic, and in particular telomeric, DNA. To overcome the limitations of cloning parasite DNA in bacteria, we have cloned genomic DNA from the P. falciparum strain FCR3 in yeast as artificial chromosomes. A pYAC4 library with an average insert size of approximately 100 kb was established and found to have a three to fourfold redundancy for single-copy genes. Unlike bacterial hosts, yeast stably maintain and propagate large tracts of parasite DNA. Long-range restriction enzyme mapping of YAC clones demonstrates that the cloned DNA is contiguous and identical to the native parasite genomic DNA. Since the telomeric ends of chromosomes are underrepresented in YAC libraries, we have enriched for these sequences by cloning P. falciparum telomeric DNA fragments (from 40 to 130 kb) as YACs by complementation in yeast.  相似文献   

4.
We describe a novel cloning method termed SLiCE (Seamless Ligation Cloning Extract) that utilizes easy to generate bacterial cell extracts to assemble multiple DNA fragments into recombinant DNA molecules in a single in vitro recombination reaction. SLiCE overcomes the sequence limitations of traditional cloning methods, facilitates seamless cloning by recombining short end homologies (≥15 bp) with or without flanking heterologous sequences and provides an effective strategy for directional subcloning of DNA fragments from Bacteria Artificial Chromosomes (BACs) or other sources. SLiCE is highly cost effective as a number of standard laboratory bacterial strains can serve as sources for SLiCE extract. In addition, the cloning efficiencies and capabilities of these strains can be greatly improved by simple genetic modifications. As an example, we modified the DH10B Escherichia coli strain to express an optimized λ prophage Red recombination system. This strain, termed PPY, facilitates SLiCE with very high efficiencies and demonstrates the versatility of the method.  相似文献   

5.
A bacteriophage P1 cloning system that permits the isolation and amplification of cloned DNA fragments as large as 100 kbp was described previously. We have now utilized a similar system to generate a 50,000-member human DNA library with DNA inserts ranging in size from 75 to 100 kbp. Two major obstacles were overcome in constructing the library. The first concerned the mcrAB restriction system of Escherichia coli, which degrades DNA containing MeC and interferes with the recovery of cloned human DNA inserts. In the P1 cloning system, the effect of the Mcr restriction activity is to decrease recovery of cloned inserts by about 35-fold when the activity is in the host cell line and by about 3-fold when the activity is in the cells used to prepare the packaging extract. To circumvent this problem we inactivated, by mutation, the McrAB proteins in both components of the cloning system. The second obstacle concerned the preferential cloning of small DNA fragments from a population of fragments ranging in size from 20 to 100 kbp. To deal with this problem we first modified the P1 lysogen used to prepare the in vitro head-tail packaging extract so that it would produce 12 times as many large P1 heads (head capacity about 110 kbp) as small P1 heads (head capacity about 45 kbp). We then restructured the P1 cloning vector so that it could be used to produce vector "arm" fragments that could be ligated to insert DNA at only one end. This prevented the formation of long concatamers consisting of alternating units of vector and insert DNA and prohibited the packaging of small inserts in large phage heads. Using the insert-biased large head extract, the arms vector, and size-selected human DNA fragments, we showed that as much as 90% of recovered transformants contained inserts in the desired high molecular weight range.  相似文献   

6.
Streptomyces saraceticus strain N45, a saprophytic Gram-positive bacteria, has been shown to harbor high chitinase activity. Due to its potential use in biological control, the cloning of chitinase genes and the development of methods to quickly and precisely detect its presence have become necessary. In this study, PCR-based random amplified polymorphic DNA (RAPD) and PCR strategies were used to amplify random DNA fragments from the genome of S. saraceticus N45. Three amplified DNA fragments, 417, 523 and 655 bp in length, were further isolated, subcloned and sequenced. Nest primers were designed from terminal ends of these three fragments and used for further PCR reactions. A single specific band was produced from the genomic DNA of S. saraceticus N45 for each nest primer pair. These three single bands were S. saraceticus N45 specific and were not amplified from other species of Streptomyces or bacteria, such as Ralstonia solanacearum, Agrobacterium tumefaciens, E. coli, Bacillus subtilis and Xanthomonas campestris pv. campestris. Through detection of the coexistence of these three fragments in PCR reaction using DNA or bacterial cells directly, the presence of S. saraceticus N45 can be confirmed. Further Southern analysis indicated that these three DNA fragments were specifically present in the S. saraceticus N45 genome in a single copy manner, and therefore, that they can potentially be used as markers for identification of S. saraceticus N45.  相似文献   

7.
Double-strand DNA (dsDNA) restriction fragments were chromatographed on the DuPont Bioseries GF-250 column. Two anomolous chromatographic properties were observed. (1) A triphasic dependence of retention on dsDNA chain length was observed. Small DNA fragments (less than 500 base pairs) displayed typical size exclusion, intermediate size DNA (800-5000 base pairs) eluted in the void volume, and larger DNA fragments were increasingly retained. (2) The void volume for nucleic acids was less than that for large polypeptides. The retention of moderately large DNA fragments increased linearly as the square root of the chain length over the range 5.5 to 50 kilobase pairs (ca. 3-30 X 10(6) Mr). A number of eluant manipulations were carried out in order to examine the mechanism by which the larger DNA fragments were being retained and separated. Evidence was not obtained to support either ion exchange or reverse phase as the retention mechanism. The usefulness of such a column for molecular biological manipulations is illustrated by the rapid isolation of homogeneous viral DNA fragments resected from their cloning vectors with restriction endonucleases.  相似文献   

8.
在基因克隆时,如应用通常的一些基因组文库如YAC、BAC 和PAC 等进行目的基因的筛选,在获得候选克隆后,通常进行亚克隆,然后对每个亚克隆逐一进行基因功能互补试验,不仅工作量大,而且有遗漏的可能。近年来,对一些通常的基因组文库载体进行改建,已发展了既可用于克隆,又能直接进行转化的载体,这将大大方便大片段DNA的转移。  相似文献   

9.
Q Tao  H B Zhang 《Nucleic acids research》1998,26(21):4901-4909
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) systems were previously developed for cloning of very large eukaryotic DNA fragments in bacteria. We report the feasibility of cloning very large fragments of eukaryotic DNA in bacteria using conventional plasmid-based vectors. One conventional plasmid vector (pGEM11), one conventional binary plasmid vector (pSLJ1711) and one conventional binary cosmid vector (pCLD04541) were investigated using the widely used BAC (pBeloBAC11 and pECBAC1) and BIBAC (BIBAC2) vectors as controls. The plasmid vector pGEM11 yielded clones ranging in insert sizes from 40 to 100 kb, whereas the two binary vectors pCLD04541 and pSLJ1711 yielded clones ranging in insert sizes from 40 to 310 kb. Analysis of the pCLD04541 and pSLJ1711 clones indicated that they had insert sizes and stabilities similar to the BACs and BIBACs. Our findings indicate that conventional plasmid-based vectors are capable of cloning and stably maintaining DNA fragments as large as BACs and PACs in bacteria. These results suggest that many existing plasmid-based vectors, including plant and animal transformation and expression binary vectors, could be directly used for cloning of very large eukaryotic DNA fragments. The pCLD04541 and pSLJ1711 clones were shown to be present at at least 4-5 copies/cell. The high stability of these clones indicates that stability of clones does not seem contingent on single-copy status. The insert sizes and the copy numbers of the pCLD04541 and pSLJ1711 clones indicate that Escherichia coli can stably maintain at least 1200 kb of foreign DNA per cell. These results provide a new conceptual and theoretical basis for development of improved and new vectors for large DNA fragment cloning and transformation. According to this discovery, we have established a system for large DNA fragment cloning in bacteria using the two binary vectors, with which several very large-insert DNA libraries have been developed.  相似文献   

10.
F Buchholz  M Bishop 《BioTechniques》2001,31(4):906-8, 910, 912, 914, 916, 918
We have developed a novel way to use the Cre/loxP system for in vitro manipulation of DNA and a technique to clone DNA into circular episomes. The method is fast, reliable, and allowsflexible cloning of DNA fragments into episomes containing a loxP site. We show that a loxP site can serve as a universal target site to clone a DNA fragment digested with any restriction enzyme(s). This technique abolishes the need for compatible restriction sites in cloning vectors and targets by generating custom-designed 5' 3', or blunt ends in the desired orientation and reading frame in the vector Therefore, this method eliminates the limitations encountered when DNA fragments are cloned into vectors with a confined number of cloning sites. The 34-bp loxP sequence assures uniqueness, even when large episomes are manipulated. We present three examples, including the manipulation of a bacterial artificial chromosome. Because DNA manipulation takes place at a loxP site, we refer to this technique as loxP-directed cloning.  相似文献   

11.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>10(9) transformants in Escherichia coli and 10(5)-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

12.
Direct cloning of a long continuous genome segment in a Bacillus subtilis genome vector was demonstrated for the first time. Two small DNA fragments had to be installed in the vector prior to cloning. The DNA between these two fragments was cloned via homologous recombination. The efficiency of cloning was estimated using the 3,573-kb genome of a cyanobacterium, Synechocystis sp. PCC 6803. Recombinants were selected using the internal selection system of the Bacillus genome vector or with the antibiotic resistance marker in the cyanobacterial genome. Designated genomic segments as large as 77-kb were cloned by means of a single procedure. Cloning efficiency is affected by the molecular weight of the donor DNA and the size of the DNA to be cloned. The method is suitable for direct target cloning of large-sized DNA.  相似文献   

13.
Thymidylate synthase-negative mutants of cultured mouse cells were immediately committed to cell death upon thymidine deprivation, especially when the cells were synchronized in the S phase. Thymidylate deprivation induced single strand breaks in chromosome-size DNA strands, as measured by alkaline sucrose gradient sedimentation, giving rise to two peaks, one with large and the other with small fragments, the latter about the size of T4 DNA. An increase in the small DNA fragments paralleled that of thymineless death. Thymidine deprivation also produced double strand DNA fragments as determined by a method of neutral filter elution, and their extent paralleled that of cell death. Double-stranded DNA eluted through the filter sedimented as a single peak both in a neutral and in an alkaline sucrose gradient that coincided with that of the above small DNA fragments. Therefore, the strand breaks seemed to occur in some defined portions of the genome and in a specific manner compared to breaks induced by x-rays, which occurred rather randomly. Cycloheximide blocked both thymineless death and the production of the small DNA fragments. The strand breaks induced by thymidine starvation were not repaired but instead advanced on subsequent incubation of the cells in growth medium containing thymidine.  相似文献   

14.
W A Loenen  F R Blattner 《Gene》1983,26(2-3):171-179
New phage lambda-based cloning vectors, Charons 32, 33, 34 and 35, have been constructed. These vectors allow cloning of large (19-21 kb) DNA fragments in up to six cloning sites. DNA cloned in these vectors can be propagated on recA- Escherichia coli hosts.  相似文献   

15.
Experience in shotgun sequencing a 134 kilobase pair DNA molecule.   总被引:3,自引:0,他引:3  
A J Davison 《DNA sequence》1991,1(6):389-394
Until now, large DNA sequences have been obtained by cloning fragments of the target molecule into plasmid, cosmid or bacteriophage lambda vectors. The 134 kbp DNA sequence of channel catfish virus was determined with relative ease by shotgun cloning of random fragments of genomic DNA directly into a bacteriophage M13 vector, sequencing by dideoxynucleotide chain termination, and compilation of the data using Staden's database handling programs. Experience gained during this endeavour indicates that sequences substantially larger than 134 kbp may be obtained using this approach.  相似文献   

16.
E Uhlmann 《Gene》1988,71(1):29-40
A novel approach for the synthesis of double-stranded DNA fragments from only one long oligodeoxynucleotide (oligo) is presented. The basic strategy is to use oligos which possess a short inverted repeat at their 3' end resulting in the formation of a hairpin structure. The 3' end of this hairpin then serves as a primer in the Klenow (large) fragment of E. coli DNA polymerase I-mediated synthesis of the second DNA strand. Removal of the loop structure as well as generation of sticky ends for subsequent cloning is achieved by digestion with restriction enzymes. Several oligos ranging in size from 130 to 147 nt were synthesized and successfully used in the cloning of gene fragments of up to 120 bp in length. Furthermore, a strategy for the simultaneous cloning of two synthetic DNA fragments is outlined yielding even larger gene fragments. By sequential cloning of these gene fragments the methodology presented here will allow the synthesis of genes of any size. The proposed methodology should also be useful for site-directed mutagenesis as well as saturation mutagenesis.  相似文献   

17.
We constructed a series of cosmid vectors that carry the two cohesive end sites (cos) of lambda phage, arrayed in tandem, which enabled us to clone fragments of genomic DNA of up to 50 kb without a vector background. An equimolar mixture of the left and right vector arms of equal length was prepared from the vector DNA, simply by treating the DNA sequentially with three enzymes, restriction enzyme PvuII, alkaline phosphatase, and restriction enzyme BamHI (or BglII), without purification by agarose gel electrophoresis. After phenol extraction and ethanol precipitation, the equimolar mixture of the vector arms, which carried a single cos oriented from left to right, was directly ligated with insert DNA without further manipulation. We established conditions for cosmid cloning, using two kinds of DNA fragment of 40-50 kb, prepared from mouse L cell genomic DNA, as insert DNAs, namely, three cloned BamHI fragments and Sau3AI fragments, size-selected on a sucrose density gradient. The most important parameters affecting the cloning efficiency were the quality of the insert DNA and the molar ratio of the insert and vector arms. We achieved cloning efficiencies of 3.6 X 10(6)-1.3 X 10(7) colony forming units (cfu)/micrograms of insert DNA and 1.7 X 10(5)-1.0 X 10(6) cfu/micrograms of insert DNA, using the cloned BamHI fragments and the Sau3AI fragments, respectively. We examined more than 5000 clones and found that they all contained insert DNA.  相似文献   

18.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>109 transformants in Escherichia coli and 105-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

19.
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%.  相似文献   

20.
Bacterial artificial chromosomes (BACs) derived from genomes of large DNA viruses are powerful tools for functional delineation of viral genes. Current methods for cloning the genomes of large DNA viruses as BACs require prior knowledge of the viral sequences or the cloning of viral DNA fragments, and are tedious because of the laborious process of multiple plaque purifications, which is not feasible for some fastidious viruses. Here, we describe a novel method for cloning the genomes of large DNA viruses as BACs, which entails direct in vitro transposition of viral genomes with a BAC cassette, and subsequent recovery in Escherichia coli. Determination of insertion sites and adjacent viral sequences identify the BAC clones for genetic manipulation and functional characterization. Compared to existing methods, this new approach is highly efficient, and does not require any information on viral sequences or cloning of viral DNA fragments, and plaque purifications. This method could potentially be used for discovering previously unidentified viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号