首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stem cells, which can self-renew and generate differentiated cells, have been shown to be controlled by surrounding microenvironments or niches in several adult tissues. However, it remains largely unknown what constitutes a functional niche and how niche formation is controlled. In the Drosophila ovary, germline stem cells (GSCs), which are adjacent to cap cells and two other cell types, have been shown to be maintained in the niche. In this study, we show that Notch signaling controls formation and maintenance of the GSC niche and that cap cells help determine the niche size in the Drosophila ovary. Expanded Notch activation causes the formation of more cap cells and bigger niches, which support more GSCs, whereas compromising Notch signaling during niche formation decreases the cap cell number and niche size and consequently the GSC number. Furthermore, the niches located away from their normal location can still sufficiently sustain GSC self-renewal by maintaining high local BMP signaling and repressing bam as in normal GSCs. Finally, loss of Notch function in adults results in rapid loss of the GSC niche, including cap cells and thus GSCs. Our results indicate that Notch signaling is important for formation and maintenance of the GSC niche, and that cap cells help determine niche size and function.  相似文献   

2.
3.
Rapid progress has recently been made regarding how the niche controls stem cell function, but little is yet known about how stem cells in the same niche interact with one another. In this study, we show that differentiation-defective Drosophila ovarian germline stem cells (GSCs) can outcompete normal ones for niche occupancy in a cadherin-dependent manner. The differentiation-defective bam or bgcn mutant GSCs invade the niche space of neighboring wild-type GSCs and gradually push them out of the niche by upregulating E-cadherin expression. Furthermore, the bam/bgcn-mediated GSC competition requires E-cadherin and normal GSC division, but not the self-renewal-promoting BMP niche signal, while different E-cadherin levels can sufficiently stimulate GSC competition. Therefore, we propose that GSCs have a competitive relationship for niche occupancy, which may serve as a quality control mechanism to ensure that accidentally differentiated stem cells are rapidly removed from the niche and replaced by functional ones.  相似文献   

4.
All stem cells have the ability to balance their production of self-renewing and differentiating daughter cells. The germline stem cells (GSCs) of the Drosophila ovary maintain such balance through physical attachment to anterior niche cap cells and stereotypic cell division, whereby only one daughter remains attached to the niche. GSCs are attached to cap cells via adherens junctions, which also appear to orient GSC division through capture of the fusome, a germline-specific organizer of mitotic spindles. Here we show that the Rab11 GTPase is required in the ovary to maintain GSC-cap cell junctions and to anchor the fusome to the anterior cortex of the GSC. Thus, rab11-null GSCs detach from niche cap cells, contain displaced fusomes and undergo abnormal cell division, leading to an early arrest of GSC differentiation. Such defects are likely to reflect a role for Rab11 in E-cadherin trafficking as E-cadherin accumulates in Rab11-positive recycling endosomes (REs) and E-cadherin and Armadillo (beta-catenin) are both found in reduced amounts on the surface of rab11-null GSCs. The Rab11-positive REs through which E-cadherin transits are tightly associated with the fusome. We propose that this association polarizes the trafficking by Rab11 of E-cadherin and other cargoes toward the anterior cortex of the GSC, thus simultaneously fortifying GSC-niche junctions, fusome localization and asymmetric cell division. These studies bring into focus the important role of membrane trafficking in stem cell biology.  相似文献   

5.
6.
李荣  张茹 《生命科学》2003,15(5):279-282
Notch信号途径是通过局部细胞间相互作用,实现细胞间通讯、胞浆内的信号转导以及核内转录,从而控制细胞的增殖、分化、凋亡、迁移及粘附等细胞的命运的途径。它在进化中非常保守,在机体的整个生长发育过程的调控中发挥着重要的作用。Notch信号途径作用过程受其他多种分子和途径的调节。本文从细胞外水平、细胞浆水平和细胞核水平分别讨论了Notch信号途径的调节。对进一步了解Notch信号途径,解释生理病理现象、控制和治疗疾病提供基础。  相似文献   

7.
8.
Notch signaling is essential for hematopoietic stem cell (HSC) formation during embryogenesis, and hitherto it was also thought to be required for HSC maintenance. However, in this issue of Cell Stem Cell, Maillard et al. (2008) demonstrate rather conclusively that inactivation of the Notch pathway in HSCs does not interfere with their self-renewal.  相似文献   

9.

Background  

The follicle cells of the Drosophila egg chamber provide an excellent model in which to study modulation of the cell cycle. During mid-oogenesis, the follicle cells undergo a variation of the cell cycle, endocycle, in which the cells replicate their DNA, but do not go through mitosis. Previously, we showed that Notch signaling is required for the mitotic-to-endocycle transition, through downregulating String/Cdc25, and Dacapo/p21 and upregulating Fizzy-related/Cdh1.  相似文献   

10.
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.  相似文献   

11.
Notch signalling in Drosophila: three ways to use a pathway   总被引:4,自引:0,他引:4  
Cell-cell interactions mediated by Notch are critical at multiple stages of development. Our current understanding of the Notch signalling pathway suggests a comparatively simple transduction mechanism. However, this core pathway can be deployed in three different types of developmental process: lateral inhibition, lineage decisions and boundary formation. These illustrate how the activity of the pathway can be modulated both at the cell surface, through availability and effectiveness of ligand interactions, and inside the cell, through effects on the transduction pathway and the responsiveness of target genes.  相似文献   

12.
The Notch intercellular signalling pathway is important throughout development, and its components are modulated by a variety of cellular and molecular mechanisms. Ligand and receptor trafficking are tightly controlled, although context-specific regulation of this is incompletely understood. We show that during sense organ precursor specification in Drosophila, the cell adhesion molecule Echinoid colocalises extensively with the Notch ligand, Delta, at the cell membrane and in early endosomes. Echinoid facilitates efficient Notch pathway signalling. Cultured cell experiments suggest that Echinoid is associated with the cis-endocytosis of Delta, and is therefore linked to the signalling events that have been shown to require such Delta trafficking. Consistent with this, overexpression of Echinoid protein causes a reduction in Delta level at the membrane and in endosomes. In vivo and cell culture studies suggest that homophilic interaction of Echinoid on adjacent cells is necessary for its function.  相似文献   

13.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

14.
罗飞  李志英 《生命科学》2011,(5):445-448
Notch是对脊椎和无脊椎动物的系统发育、肿瘤发生等生理病理过程十分重要的一类信号受体家族。活化的Notch受体与其配体结合后,通过两次水解而释放其胞内段,后者入核后与转录因子CSL家族结合而激活靶基因,精确调控各谱系细胞的分化、增殖和凋亡,在细胞命运决定中起关键作用。近来研究表明,Notch信号通路与卵巢生理病理密切相关。  相似文献   

15.
Adult epithelial stem cells are thought to reside in specific niches, where they are maintained by adhesion to stromal cells and by intercellular signals. In niches that harbor multiple adjacent stem cells, such as those maintaining Drosophila germ cells, lost stem cells are replaced by division of neighboring stem cells or reversion of transit cells. We have characterized the Drosophila follicle stem cell (FSC) niche as a model of the epithelial niche to learn whether nonneighboring cells can also generate stem cell replacements. Exactly two stroma-free FSC niches holding single FSCs are located in fixed locations on opposite edges of the Drosophila ovariole. FSC daughters regularly migrate across the width of the ovariole to the other niche before proliferating and contributing to the follicle cell monolayer. Crossmigrating FSC daughters compete with the resident FSC for niche occupancy and are the source of replacement FSCs. The ability of stem cell daughters to target a distant niche and displace its resident stem cell suggests that precancerous mutations might spread from niche to niche within stem cell-based tissues.  相似文献   

16.
Reconstructing stem cell niches via droplet microfluidic technology.
  1. Download : Download high-res image (237KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
19.
Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell–GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell–GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.  相似文献   

20.
Identifying genes involved in the control of adherens junction (AJ) remodeling is essential to understanding epithelial morphogenesis. During follicular epithelium development in Drosophila melanogaster, the main body follicular cells (MBFCs) are displaced toward the oocyte and become columnar. Concomitantly, the stretched cells (StCs) become squamous and flatten around the nurse cells. By monitoring the expression of epithelial cadherin and Armadillo, I have discovered that the rate of AJ disassembly between the StCs is affected in follicles with somatic clones mutant for fringe or Delta and Serrate. This results in abnormal StC flattening and delayed MBFC displacement. Additionally, accumulation of the myosin II heavy chain Zipper is delayed at the AJs that require disassembly. Together, my results demonstrate that the Notch pathway controls AJ remodeling between the StCs and that this role is crucial for the timing of MBFC displacement and StC flattening. This provides new evidence that Notch, besides playing a key role in cell differentiation, also controls cell morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号