首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cytoplasmic free Ca2+ (Ca2+i) was chelated to 10-20 nM in the macrophage cell line J774 either by incubation with quin2 acetoxymethyl ester in the absence of external Ca2+ (Di Virgilio, F., Lew, P.D., and Pozzan, T. (1984) Nature 310, 691-693) or by loading [ethyl-enebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) into the cytoplasm via reversible permeabilization of the plasma membrane with extracellular ATP (Steinberg, T.H., Newman, A.S., Swanson, J.A., and Silverstein, SS.C. (1987) J. Biol. Chem. 262, 8884-8888; Di Virgilio, F., Meyer, B.C., Greenberg, S., and Silverstein, S.C. (1988) J. Cell Biol. 106, 657-666). After removal of ATP from the incubation medium, ATP-permeabilized Ca2+i-depleted macrophages recovered a near-normal plasma membrane potential which slowly depolarized over a 2-4 h incubation at low [Ca2+]i. In both ATP-treated and quin2-loaded cells, depolarization of plasma membrane potential was paralleled by an increase in plasma membrane permeability to low molecular weight aqueous solutes such as eosin yellowish (Mr 692), ethidium bromide (Mr 394), and lucifer yellow (Mr 463). This increased plasma membrane permeability was not accompanied by release of the cytoplasmic marker lactic dehydrogenase for incubations up to 4 h and was likely a specific effect of Ca2+i depletion since it was not caused by: (i) the mere incubation of macrophages with extracellular EGTA, i.e. at near-normal [Ca2+]i; and (ii) loading into the cytoplasm of diethylenetriaminepentaacetic acid, a specific chelator of heavy metals with low affinity for Ca2+. Treatment of Ca2+i-depleted cells with direct (phorbol 12-myristate 13-acetate) or indirect (platelet-activating factor) activators of protein kinase C prevented the increase in plasma membrane permeability. Down-regulation of protein kinase C rendered Ca2+i-depleted macrophages refractory to the protective effect of phorbol 12-myristate 13-acetate. This report suggests a role for Ca2+i and possibly protein kinase C in the regulation of plasma membrane permeability to low molecular weight aqueous solutes.  相似文献   

4.
The causes of inhibition of Escherichia coli inorganic pyrophosphatase (PPase) by Ca2+ were investigated. The interactions of several mutant pyrophosphatases with Ca2+ in the absence of substrate were analyzed by equilibrium dialysis. The kinetics of Ca2+ inhibition of hydrolysis of the substrates MgPPi and LaPPi by the native PPase and three mutant enzymes (Asp-42-Asn, Ala, and Glu) were studied. X-Ray data on E. coli PPase complexed with Ca2+ or CaPPi solved at atomic resolution were analyzed. It was shown that, in the course of the catalytic reaction, Ca2+ replaces Mg2+ at the M2 site, which shows higher affinity for Ca2+ than for Mg2+. Different properties of these cations account for active site deformation. Our findings indicate that the filling of the M2 site with Ca2+ is sufficient for PPase inhibition. This fact proves that Ca2+ is incapable of properly activating the H2O molecule for nucleophilic attack on PPi. It was also demonstrated that Ca2+, as a constituent of the non-hydrolyzable substrate analog CaPPi, competes with MgPPi at the M3 binding site. As a result, Ca2+ is a powerful inhibitor of all known PPases. Other possible reasons for the inhibitory effect of Ca2+ on the enzyme activity are also considered.  相似文献   

5.
Polyamines decrease Escherichia coli outer membrane permeability.   总被引:1,自引:0,他引:1       下载免费PDF全文
The permeability of the outer membranes of gram-negative bacteria to hydrophilic compounds is mostly due to the presence of porin channels. We tested the effects of four polyamines (putrescine, cadaverine, spermidine, and spermine) on two processes known to depend on intact porin function: fluxes of beta-lactam antibiotics in live cells and chemotaxis. In both cases, inhibition was observed. Measurements of the rate of permeation of cephaloridine and of chemotaxis in swarm plates and capillary assays were used to determine the concentration dependence of this modulation. The effective concentration ranges depended on the nature of the polyamine and varied from submillimolar for spermine to tens of millimolar for cadaverine. Both OmpC and OmpF porins were inhibited, although the effects on OmpC appeared to be milder. These results are in agreement with our observations that polyamines inhibit porin-mediated ion fluxes in electrophysiological experiments, and they suggest that a low-affinity polyamine binding site might exist in these porins. These results reveal the potential use of porins as targets for blocking agents and suggest that polyamines may act as endogenous modulators of outer membrane permeability.  相似文献   

6.
Plasmid genes increase membrane permeability in Escherichia coli   总被引:2,自引:0,他引:2  
The membrane permeability to o-nitrophenyl beta-D-galactoside is increased in the presence of rifampicin in Escherichia coli cells carrying srnB+ or pnd+ plasmids, but not in the cells carrying srnB- or pnd- mutant plasmids. The same permeability alteration was also observed at 42 degrees C when a rpoC4- mutant strain was used as a host strain in the absence of rifampicin. These results and the blockage of the effects by action of chloramphenicol suggest that the increase of permeability to o-nitrophenyl galactoside was caused by the expression of srnB+ or pnd+ gene, respectively. srnB+ gene expression leads to massive RNA degradation, probably through the activation of the rna+ gene product. In an rna- strain carrying the srnB+ plasmid, the extent of RNA degradation was reduced, whereas the permeability to o-nitrophenyl galactoside was increased to the same level as in the rna+ strain. Also, the increase in permeability to o-nitrophenyl galactoside was observed at 30 degrees C, although high-temperature incubation (42 degrees C) was necessary for the induction of RNA degradation. These results suggest that the alteration in permeability is a more direct effect of the expression of srnB+ or pnd+ gene and that the RNA degradation is a secondary phenomenon caused by the alteration in the membrane.  相似文献   

7.
Ca2+ treatment renders the outer membrane of Escherichia coli reversibly permeable for macromolecules. We investigated whether Ca2+-induced uptake of exogenous protein into the periplasm occurs by mechanisms similar to Ca2+-induced uptake of DNA into the cytoplasm during transformation. Protein import through the outer membrane was monitored by measuring reconstitution of maltose transport after the addition of shock fluid containing maltose-binding protein. DNA import through the outer and inner membrane was measured by determining the efficiency of transformation with plasmid DNA. Both processes were stimulated by increasing Ca2+ concentrations up to 400 mM. Plasmolysis was essential for a high efficiency; reconstitution and transformation could be stimulated 5- and 40-fold, respectively, by a high concentration of sucrose (400 mM) in cells incubated with a suboptimal Ca2+ concentration (50 mM). The same divalent cations that promote import of DNA (Ca2+, Ba2+, Sr2+, Mg2+, and Ni2+) also induced import of protein. Ca2+ alone was found to be inefficient in promoting reconstitution; successive treatment with phosphate and Ca2+ ions was essential. Transformation also was observed in the absence of phosphate, but could be stimulated by pretreatment with phosphate. The optimal phosphate concentrations were 100 mM and 1 to 10 mM for reconstitution and transformation, respectively. Heat shock, in which the cells are rapidly transferred from 0 to 42 degrees C, affected the two processes differently. Incubation of cells at 0 degrees C in Ca2+ alone allows rapid entry of protein, but not of DNA. Transformation was observed only when exogenous DNA was still present during the heat shock. Shock fluid containing maltose-binding protein inhibited transformation (with 6 microgram of DNA per ml, half-maximal inhibition occurred at around 300 microgram of shock fluid per ml). DNA inhibited reconstitution (with 5 microgram of shock fluid per ml, half-maximal inhibition occurred at around 3 mg of DNA per ml).  相似文献   

8.
EnvC, a new lipoprotein of the cytoplasmic membrane of Escherichia coli   总被引:5,自引:0,他引:5  
Abstract A gene product with an apparent molecular mass of approximately 39000 Da can be identified in the cytoplasmic membrane of Escherichia coli upon expression of cloned envC . In this communication we report that the product was labelled with [3H]glycerol and [3H]palmitic acid, and a precursor molecule of increased molecular mass was accumulated when cells were treated with globomycin, a specific inhibitor for the prolipoprotein signal peptidase. The same precursor molecule was encoded by an envC mutant gene, in which the cysteine residue in a pentapeptide sequence, Leu-Ile-Ala-Gly-Cys24 within the amino terminal region of EnvC, was replaced by tryptophane (Trp24). This protein was not labelled with [3H]glycerol. The results demonstrate that the envC gene product represents a new lipoprotein of the cytoplasmic membrane of E. coli .  相似文献   

9.
The organization of the membrane-bound hydrogenase from Escherichia coli was studied by using two membrane-impermeant probes, diazotized [125I]di-iodosulphanilic acid and lactoperoxidase-catalysed radioiodination. The labelling pattern of the enzyme obtained from labelled spheroplasts was compared with that from predominantly inside-out membrane vesicles, after recovery of hydrogenase by immunoprecipitation. The labelling pattern of F1-ATPase was used as a control for labelling at the cytoplasmic surface throughout these experiments. Hydrogenase (mol.wt. approx. 63 000) is transmembranous. Crossed immunoelectrophoresis with anti-(membrane vesicle) immunoglobulins, coupled with successive immunoadsorption of the antiserum with spheroplasts, confirmed the location of hydrogenase at the periplasmic surface. Immunoadsorption with sonicated spheroplasts suggests that the enzyme is also exposed at the cytoplasmic surface. Inside-out vesicles were prepared by agglutination of sonicated spheroplasts, and the results of immunoadsorption using these vesicles confirms the location of hydrogenase at the cytoplasmic surface.  相似文献   

10.
11.
12.
The terminal electron transfer enzyme fumarate reductase has been shown to be composed of a membrane-extrinsic catalytic dimer of 69- and 27-kilodalton (kd) subunits and a membrane-intrinsic anchor portion of 15- and 13-kd subunits. We prepared inverted membrane vesicles from a strain carrying the frd operon on a multicopy plasmid. When grown anaerobically on fumarate-containing medium, the membranes of this strain are highly enriched in fumarate reductase. When negatively stained preparations of these vesicles were examined with an electron microscope, they appeared to be covered with knob-like structures about 4 nm in diameter attached to the membrane by short stalks. Treatment of the membranes with chymotrypsin destroyed the 69-kd subunit, leaving the 27-, 15-, and 13-kd subunits bound to the membrane; these membranes appeared to retain remnants of the structure. Treatment of the membranes with 6 M urea removed the 69- and 27-kd subunits, leaving the anchor polypeptides intact. These vesicles appeared smooth and structureless. A functional four-subunit enzyme and the knob-like structure could be reconstituted by the addition of soluble catalytic subunits to the urea-stripped membranes. In addition to the vesicular structures, we observed unusual tubular structures which were covered with a helical array of fumarate reductase knobs.  相似文献   

13.
14.
Escherichia coli ribosome released protons upon addition of Mg2+. The Mg2+-induced proton release was studied by means of the pH-stat technique. The number of protons released from a 70 S ribosome in the Mg2+ concentration range 1-20 mM was about 30 at pH 7 and 7.6, and increased to about 40 at pH 6.5. The rRNA mixture extracted from 70 S ribosome showed proton release of amount and of pH dependence similar to those of the 70 S ribosome but the ribosomal protein mixture released few. This indicates that rRNA is the main source of the protons released from ribosome. The pH titration of rRNA showed that the pKa values of nucleotide bases were downward shifted upon Mg2+ binding. This pKa shift can account for the proton release. The Scatchard plots of proton release from rRNA and ribosome were concave upward, showing that the Mg2+-binding sites leading to proton release were either heterogeneous or had a negative cooperativity. A model assuming heterogeneous Mg2+-binding sites is shown to be unable to explain the proton release. Electrostatic field effect models are proposed in which Mg2+ modulates the electrostatic field of phosphate groups and the potential change induces a shift of the pKa values of bases that leads to the proton release. These models can explain the main features of the proton release.  相似文献   

15.
16.
E J Demant  P K Jensen 《FEBS letters》1983,155(2):197-200
NADH oxidation in Escherichia coli cytoplasmic membrane vesicles enriched in anionic phospholipids by de novo synthesis of lipid in the vesicles from acyl-CoA esters and sn-glycerol 3-phosphate has been studied. NADH-oxidase but not NADH-dehydrogenase activity was found to decrease during synthesis and accumulation of phospholipid in the vesicles. Density gradient fractionation showed that NADH-oxidase activity was reduced to approximately 30% in vesicles with a 3-6 fold increase in anionic phospholipid, whereas vesicles with a greater than 10-fold increase in phospholipid had virtually no NADH oxidase activity.  相似文献   

17.
18.
Apparent permeability mutations were produced in Escherichia coli K-12 by bacteriophage mu-1 mutagenesis. They are pleiotropic mutations showing sensitivity to a number of detergents and unrelated antibiotics, and presumably they affect cell wall or membrane biosynthesis. One of the mutations was genetically mapped at a site in or near the acrA and mtc loci at approximately 10.5 min on the Taylor and Trotter map (1972).  相似文献   

19.
20.
An overexpression system for spinach apocytochrome b(6) as a fusion protein to a maltose-binding protein in Escherichia coli was established using the expression vector pMalp2. The fusion of the cytochrome b(6) to the periplasmic maltose-binding protein directs the cytochrome on the Sec-dependent pathway. The cytochrome b(6) has a native structure in the bacterial cytoplasmic membrane with both NH(2) and COOH termini on the same, periplasmic side of the membrane but has the opposite orientation compared to that in thylakoid. Our data also show that in the E. coli cytoplasmic membrane, apocytochrome b(6) and exogenic hemes added into a culture media spontaneously form a complex with similar spectroscopic properties to native cytochrome b(6). Reconstituted membrane-bound cytochrome b(6) contain two b hemes (alpha band, 563 nm; average E(m,7) = -61 +/- 0.84 and -171 +/- 1.27 mV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号