首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.  相似文献   

2.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

3.
Recent studies suggest that the morphological and physiological properties of tight junctions (TJs) are determined by the combination and mixing ratios of claudin isoforms. In this study, we tried to characterize mouse cell lines by expression of claudin isoforms to use for studying epithelial TJs by overexpression or suppression of claudin(s) in the cells and found that claudin-2 was expressed in a few mouse rectum carcinoma cells, CMT93 cells. We have isolated CMT93-I and -II cells from CMT93 cells by immunohistochemical screening for the presence or absence of claudin-2 expression. Immunofluorescence and RT-PCR analyses showed that expression of claudin-4, -6, -7 and -12 was detected in both cell lines, but claudin-2 was only expressed in CMT93-II cells. There were no differences in paracellular permeability between CMT93-I and -II cells examined by 4 kDa FITC-dextran and fluorescein sodium, or in the number of TJ strands examined by freeze-fracture electron microscopy. However, the transepithelial electrical resistance (TER) of CMT93-I cells was approximately 6.5 times higher than that of CMT93-II cells, suggesting that expression of claudin-2 may be related to decreased TER. Comparative examinations of CMT93-I and -II cells provide a clue how the combination and mixing ratios of claudin isoforms regulate the paracellular permeability.  相似文献   

4.
We prepare an extract of dog urine (DLU) that, when applied to monolayers of MDCK cells (epithelial, derived from a normal dog), enhances the transepithelial electrical resistance (TER) in a dose-dependent manner. This increase is not reflected in variations of the linear amount of TJ nor in changes of the pattern of junctional strands as observed in freeze fracture replicas, nor in the distribution of claudin 1 (a membrane protein of the TJ) nor ZO-1 (a TJ-associated protein). A preliminary characterization of the active component of DLU indicates that it weighs 30-50 kDa, bears a net negative electric charge, and is destroyed by type I protease but not by 10-min boiling. DLUs prepared from human, dog, rabbit and cat are effective on MDCK cells. However, dog DLU increases TER in MDCK (dog) as well as LLCPK1 (pig) monolayers, but not in other epithelial cell lines such as LLCRK1 (rabbit), PTK2 (kangaroo) and MA-104 (monkey), nor in the endothelial cell line CPA47 (cow). Given that in its transit from the glomerulus to the urinary bladder the filtrate increases its concentration by more than two orders of magnitude, the substance(s) we report may act at increasingly higher concentrations in each segment, and afford a potential clue to the progressive increase of TER across the walls of the nephron from the proximal to the collecting duct.  相似文献   

5.
Claudins are one of the transmembrane proteins found at tight junctions (TJs); they constitute the backbone of TJ strands and comprise a multigene family. Claudins share a YV sequence at the COOH-termini, which is considered to be a ZO-binding motif. Overexpression of claudin-15 (15CL) or claudin-15 tagged with enhanced green fluorescent protein at the NH2-terminus (EGFP-15CL) induced aberrant strands in MDCK II cells, even though claudin-15 has the ZO-binding motif. Morphometric analysis by freeze-fracture electron microscopy revealed that the mean number of apical TJ strands increased by 47% in EGFP-1CL-expressing cells, 21% in EGFP-15CL-expressing cells, and 28% in 15CL-expressing cells. The number of free-ended apical strands increased remarkably in EGFP-15CL- and 15CL-expressing cells, but not in EGFP-1CL-expressing cells. When MDCK cells expressing EGFP-1CL, EGFP-15CL or 15CL were co-cultured with parent MDCK cells, which express claudin-1 but not claudin-15, EGFP-15CL and 15CL could not be concentrated at the apical junctional region between the heterotypic cells, though EGFP-1CL could. These results suggest that not only binding to ZO-1, but also head-to-head compatibility between claudin species, is involved in organizing claudin proteins at the apical junctional region.  相似文献   

6.
7.
Heparin-binding (HB)-EGF, a ligand for EGF receptors, is synthesized as a membrane-anchored precursor that is potentially capable of juxtacrine activation of EGF receptors. However, the physiological importance of such juxtacrine signaling remains poorly described, due to frequent inability to distinguish effects mediated by membrane-anchored HB-EGF vs. mature "secreted HB-EGF." In our studies, using stable expression of a noncleavable, membrane-anchored rat HB-EGF isoform (MDCK(rat5aa) cells) in Madin-Darby canine kidney (MDCK) II cells, we observed a significant increase in transepithelial resistance (TER). Similar significant increases in TER were observed on stable expression of an analogous, noncleavable, membrane-anchored human HB-EGF construct (MDCK(human5aa) cells). The presence of noncleavable, membrane-anchored HB-EGF led to alterations in the expression of selected claudin family members, including a marked decrease in claudin-2 in MDCK(rat5aa) cells compared with the control MDCK cells. Reexpression of claudin-2 in MDCK(rat5aa) cells largely prevented the increases in TER. Ion substitution studies indicated decreased paracellular ionic permeability of Na(+) in MDCK(rat5aa) cells, further indicating that the altered claudin-2 expression mediated the increased TER seen in these cells. In a Ca(2+)-switch model, increased phosphorylation of EGF receptor and Akt was observed in MDCK(rat5aa) cells compared with the control MDCK cells, and inhibition of these pathways inhibited TER changes specifically in MDCK(rat5aa) cells. Therefore, we hypothesize that juxtacrine activation of EGFR by membrane-anchored HB-EGF may play an important role in the regulation of tight junction proteins and TER.  相似文献   

8.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

9.
We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier.  相似文献   

10.
Claudins constitute tight junction (TJ) strands. In order to examine the function of the second extracellular loop (ECL2), we constructed 1CLΔFY and 1CLΔPL in which highly conserved amino acids, FY or PL, in the ECL2 of mouse claudin-1 were deleted. They were then tagged with either EGFP at the NH2-terminus (EGFP1CLΔFY and EGFP1CLΔPL) or the myc-epitope at the COOH-terminus (1CLΔFYmyc and 1CLΔPLmyc). The expression of EGFP1CLΔFY and EGFP1CLΔPL in TJ-free HEK293 cells formed TJ strands resembling those formed by wild-type claudin-1. The expression of 1CLΔPLmyc in TJ-bearing MDCK II cells induced aberrant TJ strands in the lateral plasma membranes whose intramembranous particles were almost equally distributed in the P- and E-face. In contrast, 1CLΔFYmyc formed aggregates of short continuous strands which were frequently associated with vesicle-like structures. Coculture experiments with MDCK II cells showed that 1CLΔPLmyc was localized at heterotypic cell–cell junctions but 1CLΔFYmyc was not. These results suggest that changes in the TJ morphology due to the expression of either 1CLΔFYmyc or 1CLΔPLmyc may be caused by some factors specific to epithelial MDCK II cells including endogenous claudins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Tight-junction strands, which are organized into the beltlike cell-cell adhesive structure called the zonula occludens (TJ), create the paracellular permselective barrier in epithelial cells. The TJ is constructed on the basis of the zonula adherens (AJ) by polymerized claudins in a process mediated by ZO-1/2, but whether the 24 individual claudin family members play different roles at the TJ is unclear. Here we established a cell system for examining the polymerization of individual claudins in the presence of ZO-1/2 using an epithelial-like cell line, SF7, which lacked endogenous TJs and expressed no claudin but claudin-12 in immunofluorescence and real-time PCR assays. In stable SF7-derived lines, exogenous claudin-7, -14, or -19, but no other claudins, individually reconstituted TJs, each with a distinct TJ-strand pattern, as revealed by freeze-fracture analyses. Fluorescence recovery after photobleaching (FRAP) analyses of the claudin dynamics in these and other epithelial cells suggested that slow FRAP-recovery dynamics of claudins play a critical role in regulating their polymerization around AJs, which are loosely coupled with ZO-1/2, to form TJs. Furthermore, the distinct claudin stabilities in different cell types may help to understand how TJs regulate paracellular permeability by altering the paracellular flux and the paracellular ion permeability.  相似文献   

12.
Members of the newly identified claudin gene family constitute tight junction (TJ) strands, which play a pivotal role in compartmentalization in multicellular organisms. We identified oligodendrocyte-specific protein (OSP) as claudin-11, a new claudin family member, due to its sequence similarity to claudins as well as its ability to form TJ strands in transfected fibroblasts. Claudin-11/OSP mRNA was expressed in the brain and testis. Immunofluorescence microscopy with anti-claudin-11/OSP polyclonal antibody (pAb) and anti-neurofilament mAb revealed that in the brain claudin-11/OSP-positive linear structures run in a gentle spiral around neurofilament-positive axons. At the electron microscopic level, these linear structures were identified as the so-called interlamellar strands in myelin sheaths of oligodendrocytes. In testis, well-developed TJ strands of Sertoli cells were specifically labeled with anti-claudin-11/OSP pAb both at immunofluorescence and electron microscopic levels. These findings indicated that the interlamellar strands of oligodendrocyte myelin sheaths can be regarded as a variant of TJ strands found in many other epithelial cells, and that these strands share a specific claudin species, claudin-11/OSP, with those in Sertoli cells to create and maintain the repeated compartments around axons by oligodendrocytes.  相似文献   

13.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

14.
Tight junctions (TJs) in endothelial cells are thought to determine vascular permeability. Recently, claudin-1 to -15 were identified as major components of TJ strands. Among these, claudin-5 (also called transmembrane protein deleted in velo-cardio-facial syndrome [TMVCF]) was expressed ubiquitously, even in organs lacking epithelial tissues, suggesting the possible involvement of this claudin species in endothelial TJs. We then obtained a claudin-6-specific polyclonal antibody and a polyclonal antibody that recognized both claudin-5/TMVCF and claudin-6. In the brain and lung, immunofluorescence microscopy with these polyclonal antibodies showed that claudin-5/TMVCF was exclusively concentrated at cell-cell borders of endothelial cells of all segments of blood vessels, but not at those of epithelial cells. Immunoreplica electron microscopy revealed that claudin-5/TMVCF was a component of TJ strands. In contrast, in the kidney, the claudin-5/TMVCF signal was restricted to endothelial cells of arteries, but was undetectable in those of veins and capillaries. In addition, in all other tissues we examined, claudin-5/TMVCF was specifically detected in endothelial cells of some segments of blood vessels, but not in epithelial cells. Furthermore, when claudin-5/TMVCF cDNA was introduced into mouse L fibroblasts, TJ strands were reconstituted that resembled those in endothelial cells in vivo, i.e., the extracellular face-associated TJs. These findings indicated that claudin-5/TMVCF is an endothelial cell-specific component of TJ strands.  相似文献   

15.
The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluorescent protein 1-fusion proteins of beta-actin, occludin, claudin-1, ZO-1, clathrin light chain A1, and caveolin-1 were imaged by time-lapse multidimensional fluorescence microscopy with simultaneous measurement of transepithelial electrical resistance (TER). Actin depolymerization was induced with latrunculin A (LatA). Within minutes of LatA addition TER began to fall. This coincided with occludin redistribution and internalization. In contrast, ZO-1 and claudin-1 redistribution occurred well after maximal TER loss. Occludin internalization and TER loss, but not actin depolymerization, were blocked at 14 degrees C, suggesting that membrane traffic is required for both events. Inhibition of membrane traffic with 0.4 M sucrose also blocked occludin internalization and TER loss. Internalized occludin colocalized with caveolin-1 and dynamin II, but not with clathrin, and internalization was blocked by dominant negative dynamin II (K44A), but not by Eps15Delta95-295 expression. Inhibition of caveolae-mediated endocytosis by cholesterol extraction prevented both LatA-induced TER loss and occludin internalization. Thus, LatA-induced actin depolymerization causes TJ structural and functional disruption by mechanisms that include caveolae-mediated endocytosis of TJ components.  相似文献   

16.
17.
Multiple signaling mechanisms regulate epithelial cell tight junction (TJ) assembly and maintenance. Several G proteins are likely to regulate these processes, but only G(i/o) have been specifically tested. Treatment of MDCK cells with cholera toxin, a Galpha(s) activator, accelerated TJ development in the calcium switch as measured by the time to half-maximal [T(50) (H)] transepithelial resistance (TER). Galpha(s) was predominantly localized in the lateral membrane, but a fraction colocalizes with ZO-1 in the TJ. MDCK cell lines expressing epitope-tagged Galpha(s) and constitutively active (R201Calpha(s)) showed a similar localization. TJ assembly was significantly faster in R201Calpha(s)-MDCK cell lines (T(50) (H) of 1.7 versus 3.3 h for controls) without detectable differences in cAMP levels. Confocal studies showed R201Calpha(s)-MDCK cells more rapidly localized ZO-1 and occludin into the developing TJ without affecting E-cadherin or Na(+)/K(+) ATPase localization. Endogenous Galpha(s) and R201Calpha(s) were immunoprecipitated with ZO-1 at baseline and during TJ assembly. The data supports a model of multiple Galpha subunits interacting with TJ proteins to regulate the assembly and maintenance of the TJ.  相似文献   

18.
Claudin-1 contributes to the epithelial barrier function in MDCK cells   总被引:12,自引:0,他引:12  
Tight junctions (TJs) create a paracellular permeability barrier and also act as a fence preventing intermixing of proteins and lipids between the apical and basolateral plasma membranes. Recently, claudin-1 has been identified as an integral membrane protein localizing at TJs, and introduced claudin-1 can form TJ-like networks in fibroblasts. To investigate the function of claudin-1, MDCK cells were transfected with a mammalian expression vector containing myc-tagged mouse claudin-1, and four stable clones were obtained. The myc-tagged claudin-1 precisely colocalized with both occludin and ZO-1 at cell-cell contact sites, indicating that exogenous claudin-1 was properly targeted to the TJs. Immunoblot analysis revealed that overexpression of claudin-1 increased expression of ZO-1 but not of occludin or ZO-2. The barrier functions of these cells were evaluated by transepithelial electrical resistance (TER) and paracellular flux. Claudin-1-expressing cells exhibited about four times higher TER than wild-type MDCK cells. Consistent with the increase of TER, the cells overexpressing claudin-1 showed reduced paracellular flux, estimated at 4 and 40 kD FITC-dextrans. These results suggest that claudin-1 is involved in the barrier function at TJs.  相似文献   

19.
The claudin family is a set of integral membrane proteins found at cell-cell interactions in tight junctions. To identify proteins that interact with claudin-8, we used the yeast two-hybrid system to search for binding partners. Using the C-terminal 37 amino acids of claudin-8 as bait, we screened a human kidney cDNA library and identified multi-PDZ domain protein 1 (MUPP1) as a claudin-8 binding protein. MUPP1 contains 13 PDZ domains and binds to claudin-8 though its PDZ9 domain. When MDCK cells were transfected with epitope-tagged claudin-8 or MUPP1, both molecules were concentrated at cell-cell junctions. The interaction of claudin-8 and MUPP1 in vivo was confirmed by co-immunolocalization and co-immunoprecipitation in MDCK cells. Expression of claudin-8-myc increased transepithelial electrical resistance (TER) and reduced paracellular flux using FITC-dextran as a tracer. Over-expression of FLAG-MUPP1 in MDCK cells also reduced the epithelial paracelhular conductance. Our results indicate that claudin-8 and MUPP1 interact in tight junctions of epithelial cells and are involved in the tight junction barrier function.  相似文献   

20.
Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号